

Summary
A small business, whose main profits are online brick-and-mortar sales, is looking to start its
shipping operations. It wishes to provide the continental United States with one-day transit by
ground shipping with the United Parcel Service. Our task was to find the optimal warehouse
placement to cover the continental United States with one-day transit while minimizing the
number of warehouses. After finding the optimal placement, we considered state taxes as well as
the tax cuts from the addition of clothing to the company’s inventory.

Using transit day maps from the UPS website, we created a genetic algorithm to optimize
the coverage of the United States using a certain number of warehouses. We found that it took 32
warehouses to cover 100% of the continental United States with one-day transit. However, this
was highly inefficient because it unnecessarily added warehouses in order to provide one-day
transit to unpopulated areas like forest preserves. We found that with 23 warehouses, it was
possible to cover 95.89% of the continental United States and provide one-day transit to 99.6%
of the population, allowing us to cut down on nine warehouses while only losing one-day transit
to 0.4% of the population.

We then altered our program to take state tax rates into consideration when optimizing
the warehouse placement. The new program produced sets containing mostly ZIP codes
corresponding to places with low tax rates. However, this greatly reduced the total one-day
transit coverage produced by the set of ZIP codes.

Team #7211, Page 2 of 65

November 13, 2016

Dear Esteemed Company President,

We have decided that your business needs to expand. Extending your market to the entire nation
will help you surpass the competition, and, thus, we have decided to pursue this strategy. We will
achieve this by placing warehouses across the contiguous United States. Many problems arise,
such as building costs, taxes, which raise our prices and thus decrease our demand, and the lack
of clothing tax cuts in certain states. After 36 hours of deep consideration, we have figured out
the optimal business strategy. Using a computer program, we have considered area covered,
number of warehouses, state taxes, and tax exemptions for apparel in order to find the optimal
number of warehouses and locations.

When we use 32 warehouses, area coverage is 83.89% of continental U.S., and the average tax
rate is 2.27%.The ZIP codes for the locations are as follows:
59223, 82922, 89701, 57002, 59313, 81321, 97010, 03570, 59001, 59831, 56208, 97010, 23004,
31772, 97101, 63828, 43512, 14009, 80020, 85135, 73052, 03046, 59223, 59058, 97710, 59214,
59641, 59435, 97828, 69135, 76634, 59701

However, we saw that while the tax rates were pleasantly low, the area covered was only 83.89%
of the total landmass of the continental United States. An appealing option that disregards tax
fitness is as follows: If 23 warehouses are built, area coverage will be 99.56% and the average
tax rate will be 5.07% The ZIP codes are
49710, 44017, 42021, 30122, 87008, 83325, 58620, 68005, 27343, 77331, 12108, 85324, 76008,
54106, 71004, 98220, 93601, 66402, 57051, 59010, 33825, 80020, 57650

As you can see, the first solution gives more weight to tax while the second gives weight to area
while using less warehouses. The second solution raises the scope of our shipping coverage, it
also will decrease demand and sales because of the higher tax rate.

We have also included a formula that will tell you which option is better if you input the number
of warehouses you plan to build.These are the most optimized solutions we came up with, and
we hope they help.

Sincerely,
Team #7211

Team #7211, Page 3 of 65

Table of Contents

1 Introduction 5

2 Problem Restatement/Interpretation 6

3 Assumptions 6

4 Model 8

4.1 Goals of Model 8

4.2 Summary of Program 8

4.3 Influences of Program 8

4.3.1 Biological Evolution: Survival of the Fittest 8

4.3.2 Monte Carlo Method 9

4.4 Model Concept 9

4.5 Variables 9

4.6 Formulas 10

4.7 Maps and ZIP codes 10

4.8 Map Rendering 11

4.9 Genetic Algorithm 11

5 Model Results 12

5.1 Part 1 12

5.2 Part 2 14

5.3 Part 3 19

6 Discussion 21

6.1 Optimal placement considering only coverage 21

6.2 Optimal placement considering tax 22

6.3 Optimal placement with the addition of clothing to inventory 24

7 Model Strengths and Weaknesses 24

7.1 Strengths 24

7.2 Weaknesses 24

Team #7211, Page 4 of 65

8 Code Analysis 26

8.1 Map Downloader Algorithm 26

8.2 Map Visualizer Algorithm 26

8.3 Genetic Algorithm f 1 27

8.4 Genetic Algorithm f 2 27

8.5 Fitness Value Calculator Algorithm 27

9 References 28

10 Appendices 29

Team #7211, Page 5 of 65

1 Introduction

In the modern business world, maximizing profits is the highest priority. Businesses, especially
small ones, should try to save money whenever possible. Along with cutting wages, removing
competition, and increasing advertising and production, efficiency of company sites can save
money. For example, a cheap 50 ft. by 100 ft. warehouse costs $35,000, but when coupled with
the costs of maintenance and wages, increasing the number of warehouses significantly increases
costs.

Clearly, warehouses are expensive, making it necessary to place them in optimal
locations. In this problem, we attempt to reduce the number of warehouses while shipping to the
entirety of the continental US via one-day transit.

In order to solve the problem, we used transit-time maps from www.ups.com/maps since
the problem specifies one-day transit ground shipping via the United Parcel Service. The Python
programs we created retrieved maps as image files from ups.com and allowed us to overlay
combinations of ZIP codes and analyze the pixels of the resulting images. The only thing left to
do was choose the best combinations.

Since covering 100% of the continental United States is not cost efficient, we created a
program that optimizes the one-day transit coverage for a given number of warehouses using
genetic algorithms. This program allowed us to not only calculate the minimum number of
warehouses needed for 100% coverage, but also find the best coverage given a variable number
of warehouses. We in turn used the data we collected in order to find the optimal locations to
build warehouses.

In order to save the most amount of money, state clothing and sales tax rates were also
taken into consideration when we chose warehouse locations. We modified the original program
to weigh both sales and clothing tax rates and find optimal warehouse locations.

http://www.ups.com/maps

Team #7211, Page 6 of 65

2 Problem Restatement/Interpretation

Because a business is looking to expand its online operations, more warehouses should be built
to provide shipping to the entirety of the continental United States. Our modeling team has
access to The United Parcel Service's one-day transit maps for 1846 different ZIP codes in the
United States as well as tax data for the 48 contiguous states.

Using this information, our goal is to find the optimal placement of warehouses in order
to maximize coverage while minimizing the number of warehouses and lowering sales and
clothing tax rates for our customers by placing warehouses in low-tax states.

3 Assumptions

Assumption 1: Maps provided by UPS are accurate.
Justification : The problem shows a map from the UPS, so we assumed that the UPS is a valid
source. Additionally, the UPS is the standard for shipping in the US, and, thus, it is reasonable
that our solution should be based on the UPS maps. Furthermore, any damage caused to the
customers would be the responsibility of the UPS, not the business.

Assumption 2: There should be around 30 warehouses built.
Justification : We manually covered nearly 92.5% of the area of the continental United States
with 1 day shipping by building 30 warehouses in the most logical places (See Appendix A for
an image of this map).

Assumption 3: ZIP codes in the same county essentially have the same one-day transit coverage.
Justification : Places in the same county will likely share the same roads and routes. The
difference in travel times to certain destinations is most likely measured in minutes and is
insignificant in terms of transit-days. We confirmed this with the mapping function of ups.com;
all the pairs of ZIP codes in the same county that we tried gave identical or nearly identical
maps.

Assumption 4: Maximizing the one-day transit coverage will inherently prioritize populated
areas.
Justification : One of the biggest factors for determining the range of the one-day transit coverage
is access to roads, especially highways. Obviously, access is more readily available in large
cities, which means one-day transit range will be higher in large cities. Our program inherently
prioritizes populated areas since our program prioritizes ZIP codes with high one-day transit
ranges.

Team #7211, Page 7 of 65

Assumption 5: Uncovered areas will be less populated areas.
Justification : Unlike large cities, less populated areas have less access to roads and highways.
Thus, it is safe to assume that if an area has little coverage, there is probably a small population
there.

Assumption 6: Covering 100% of the continental United States is possible but highly
cost-inefficient.
Justification : Many areas have poor access to roads, which makes one-day transit difficult and
inefficient. For example, in order to get access to one-day transit inside the Pfeiffer Big Sur State
Park in California, we would need to build a new warehouse just to service one small area.
Clearly, this money could be spent somewhere else. Additionally, according to assumption 5,
these hard to reach areas tend to have small populations, and, thus, it would also be inefficient to
build warehouses solely to service an extremely small percent of the population. Instead of
covering the continental US with one-day transit, it would be more efficient to service 99.95% of
the population.

Assumption 7: Optimization should be based on the population coverage, not the land area
coverage.
Justification : We are trying to maximize profits for this business, and simply increasing the
amount of land we cover does not necessarily guarantee that we will increase profits.

Assumption 8: Half of all sales are apparel.
Justification: According to www.statista.com, athletic apparel sales are 32.78 billion dollars per
year. The recreation industry as a whole sells 63.65 billion dollars per year. Therefore, the
apparel probably makes up around half of the sales for our company. Therefore, we can say that
not paying clothing tax is the same as paying only half of our total sales tax regardless of item
type.

Assumption 9: All people have the same likeliness to buy the company’s product
Justification : Since we are not given an inventory of what the company is selling, we have no
way of knowing who our product will appeal to. Our best option and most logical option is to
assume that all people have the same likeliness to buy the company’s product.

Assumption 10: Companies will basically pay their own taxes
Justification : The company must keep the same competitive price including tax, since customers
can easily see tax when purchasing goods online, so if there is more tax, the company will lower
the price and will basically be paying their own tax.

http://www.statista.com/

Team #7211, Page 8 of 65

4 Model
4.1 Goals of Model:
 Find three sets of warehouse locations so that we can:

- Cover at least 99.95% of the area of the contiguous United States using less than 33
warehouses with 1 day shipping

- Select optimal placement for the warehouses in order to minimize sales taxes while still
serving at least 90% of the continental United States.

- Select optimal placement for the warehouses in order to minimize clothing taxes while
still serving at least 90% of the continental United States.

4.2 Summary of Program
First Program for Estimation:
We created a program in Python that sent HTTP POST requests to the UPS to find the area a
warehouse could serve with one-day transit. Using this and by logically inputting ZIP codes, we
estimated that there would need to be around 30 warehouses to achieve over 90% coverage.
Second Program for Optimization:
First we gave a program a list of images of the one-day transit zone from 1846 different counties
across the United States. We then created a genetic algorithm to select the best warehouse
locations to offer one-day transit coverage to as much of the country as possible for a given
number of warehouses. Knowing that a coverage of 90% or more would require around 30
warehouses from the first estimation, we inputted values around 30 into our program.

4.3 Influences of Program

4.3.1 Biological Evolution: Survival of
the Fittest
In any given biological generation, only the
organisms with the best adaptations,
specifically adaptations that increase
reproductive success or survivability, will
survive. In each new generation, a random
mutation is likely to occur, and if this
mutation increases reproductive success or
survivability, the organisms with such
mutation will be more likely to survive, and,
thus, this mutation will probably be added to
the gene pool. If the mutations decrease

Team #7211, Page 9 of 65

reproductive success or survivability, the organisms will die, and the mutations are removed
from the gene pool.

4.3.2 Monte Carlo Method
The Monte Carlo method involves algorithmic calculations using random sampling to obtain
tangible results. The Monte Carlo Method can be used to simulate the mutations in a genome
when the genes are passed from one generation to the next.

4.4 Model Concept
We needed to find optimal coverage for each number of warehouses. It would be unfeasible to
test every single combination of ZIP codes and find the best combination, so we instead created a
program that first picked a somewhat optimal set of ZIP codes and continued to improve that set
of ZIP codes.

We used HTTPS POST requests to take advantage of UPS’s delivery map generator to
download the one-day transit day range of every county in the continental United States. We then
selected ten sets of of random ZIP codes (warehouses), and we calculated the total percentage of
the area covered. This percentage number was referred to as the area fitness number. When sets
encompassed a smaller area, or had low area fitness, we removed them from the list (specifically,
the eight worst sets). To replace the eight missing sets, we duplicated the each of the desired top
two sets four times. We then chose a random ZIP code from each of the eight duplicates and
replaced it with a random ZIP code. This produced a new generation of ten sets. We repeated this
process many times until a desirable result was achieved. We repeated this procedure for
different numbers of warehouses.

For part two, we needed to take into account taxes. In order to do this, we changed the
way that we calculated fitness. We added another variable called tax that would consider the
region that would have to pay taxes. We then added the tax variable to the original fitness
variable and changed the weighting to create a rating for the organism called tax fitness. Once
again, we iterated through this procedure many times, but this time around, we used the tax
fitness, not the area fitness, to eliminate the worst organisms.

4.5 Variables

w Number of warehouses used to generate map

 p y Number of yellow pixels on the map (pixels that are within the zone of one-day
delivery)

 p o Number of pixels located elsewhere on the map besides the state where the

Team #7211, Page 10 of 65

involved zip code is located.

 p T A constant representing the total number of pixels on the appropriate regions of
the map (equivalent to 91,291)

 t M A constant representing the maximum amount of sales tax in a state (equivalent
to .075 from California)

 t n The sales tax rate of the state of the n-th zip code of a set

 f 1 Fitness value of a set of zip code locations for warehouses which represents the
percentage of continental land mass that the delivery map fills.

 f 2 Fitness value of a set of zip code locations for warehouses which prioritizes sales
tax and slightly takes land mass into consideration.

 (n) f 2 Tax fitness value of the n-th zip code of a set of zip code locations. Used only in
Part II.

4.6 Formulas
Our model for the total fitness when not taking tax into account follows as is:

 f 1 = p y
p T

Taking state sales tax into consideration, our formula for fitness was split into two different
parts: calculating a fitness for each individual zip code and using the average of those fitness
values multiplied by the original spatial fitness to determine an overall fitness of the set of zip
codes (derivations can be found in Appendix C):

 (n)f 2 = 2t M
2t − t M n · p o

p T

 f 2 = 4
3 ×(w

 (n)∑
w

n=1
f 2) + 4

1 × f 1

4.7 Maps and ZIP codes
We got a list of all ZIP codes in the United States from https://www.aggdata.com/node/86. We
narrowed down this list from 40,000 ZIP codes to 1846 ZIP codes by only including one ZIP
code from each county based on our assumption that zip codes in the same area deliver to the

https://www.aggdata.com/node/86

Team #7211, Page 11 of 65

same locations. We then downloaded an image for each ZIP code that would only show the
amount of area covered by one-day shipping. Doing this cut down the time required to retrieve
images from ups.com, making our genetic algorithm much more efficient.

4.8 Map Rendering
We created a map rendering program to visualize the area covered with one day transit by an
inputted set of ZIP codes. The program went through each ZIP code that was inputted, retrieved
the map from ups.com, and cut out the colors except for the one-day transit range. The program
then compiled the maps corresponding to the inputted ZIP codes into a single map. In overlapped
pixels, the amount of red was reduced, allowing us to visualize overlapped areas as green.

4.9 Genetic Algorithm
We developed the algorithm to generate warehouse locations as an analogy of the system of
natural selection. Algorithms such as these are often referred to as “genetic algorithms.” First,
the program began with ten sets of random ZIP codes, with each set being similar to anw
organism that has traits (the ZIP codes). During each iteration, or “generation,” it calculated the
“fitness” value (or) of each set of ZIP codes. Sorting the sets by their fitness levels from f 1 f 2
greatest to least, it removed the last eight and replaced them with four “mutations” of each of the
top two. It “mutated” the top two by picking one zip code and replacing it with a random zip
code. Once the last eight sets were replaced, it repeated the process. After a certain number of
iterations, the process would stop, and it would output the most “fit” set from the most recent

Team #7211, Page 12 of 65

generation as well as its fitness ranking. We recorded the set of zip codes and its corresponding
fitness value in our data tables.

5 Model Data and Results

5.1 Part One - Resulting Model
Finding optimal coverage for multiple numbers of warehouses allows us to view many options
for the business so that we can select the most efficient and effective number of warehouses to be
built. Our genetic algorithm ran through 2000 generations to produce the optimal percent
covered. Our results are as follows:

Warehouses Percent Covered Warehouses Percent Covered

15 81.6 24 96.55

16 86.27 25 97.23

17 88.78 26 97.77

18 89.38 27 98.67

19 92.32 28 98.9

20 92.74 29 99.15

21 93.93 30 99.31

22 94.69 31 99.57

23 95.89 32 100

We graphed the data above, and it followed the cubic regression shown in Figure 3. The
regression would be helpful when estimating best percentage covered for other numbers of
warehouses.

Team #7211, Page 13 of 65

The cubic regression function is as follows:

According to our model, we would need at least 32 warehouses in order to service the entire
continental United States with one-day transit. The following 32 ZIP codes completely fill the
map:

30236, 56510, 93201, 42322, 67001, 50025, 83311, 49010, 01810, 97004, 89440, 26148, 27201,
78610, 97801, 18039, 38602, 85324, 80010, 82601, 95605, 79745, 54930, 33002, 69345, 59054,

65614, 87001, 57003, 70517, 43434, 83463

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%200.0032x%5E3-0.292x%5E2%2B9.208x-0.0287%20%26%200%5Cleq%20x%3C32%20%5C%5C%20%20100%20%26%20x%5Cgeq32%20%5Cend%7Bmatrix%7D

Team #7211, Page 14 of 65

5.2 Part Two

We then tweaked the model in order to find the optimal coverage while taking taxes into
consideration. The taxes had 75 % weight while the area fitness had 25 % weight. The tax fitness
data is shown below.

Warehouses Tax Fitness Warehouses Tax Fitness

15 82.3853 24 82.4549

16 81.0587 25 84.5766

17 81.716 26 84.6549

18 81.1486 27 85.1031

19 82.2699 28 84.994

20 82.0647 29 86.105

21 83.4583 30 83.5205

22 82.9763 31 84.953

23 82.8299 32 85.2647

Team #7211, Page 15 of 65

When the data above was graphed, it had a logarithmic regression with an value of 0.7356R2
(Figure 5).

The formula for this regression is as follows:

Since the tax fitness is somewhat arbitrary, we also calculated that average tax rates of the
optimization for part 1 and part 2 (figure 6):

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%205.6214%5Cln(x)%2B65.815%20%26%200%3Cx%3C438%20%5C%5C%20%20100%20%26%20x%5Cgeq438%5Cend%7Bmatrix%7D

Team #7211, Page 16 of 65

The formulas for the linear regressions above for part 1 and part 2, respectively, are:

We also calculated the original fitness value using simply the area covered as a measure. Results
are shown below:

Warehouses Area Fitness Warehouses Area Fitness

15 48.2479 24 69.2029

16 41.4849 25 71.7946

17 47.8054 26 65.6582

18 52.8168 27 78.4864

19 50.4058 28 75.6044

20 60.2688 29 78.4612

21 68.814 30 79.4755

22 65.6144 31 82.799

23 66.4326 32 86.6088

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D0.0209x%2B4.5988
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D0.0701x-0.0251

Team #7211, Page 17 of 65

The data was then used to calculate the area fitness, which was then graphed (Figure 7). The
logarithmic regression had an value of 0.9262.R2

The equation for this logarithmic regression is as follows:

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%2054.664%5Cln(x)-105.07%26%200%3Cx%3C38%20%20%5C%5C%20%20100%20%26%20x%5Cgeq38%20%20%20%5Cend%7Bmatrix%7D

Team #7211, Page 18 of 65

We then graphed both tax fitnesses on the same graph, and this resulted in the following figure:

We then used a t-test to compare the population averages for the tax fitnesses from the two parts.
Results are shown in Figure 9.

Team #7211, Page 19 of 65

5.3 Part Three

The introduction of clothing slightly changes things. Since only eleven states have limited or no
clothing tax, we want to place warehouses in those states. Thus, we modified the program in part
two to halve the weight of the states that little clothing tax.

The data when we ran the program is shown below:

Warehouses Tax Fitness Warehouses Tax Fitness

15 81.94823 24 83.39286

16 80.74726 25 83.89302

17 82.23446 26 84.39762

18 83.05837 27 83.91007

19 82.06103 28 83.38867

20 81.9032 29 84.64853

21 82.80486 30 85.32594

22 82.36359 31 85.76969

23 84.48168 32 84.62019

We then graphed the data (Figure 10) and there was a logarithmic regression with an value ofR2
0.7652.

Team #7211, Page 20 of 65

The graph above had the regression formula of:

We then graphed the data from Part 2 on the same graph as the data from Part 3 (Figure 11).

Finally, we ran a t-test (Figure 12) to see if there was a significant difference between the means.

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D5.0264%5Cln(x)%2B67.646

Team #7211, Page 21 of 65

6 Discussion

6.1 Optimal placement considering only coverage

We can cover 100% of the continental United States using 32 warehouses, as mentioned in the
results. However, this is highly inefficient. If we cover everything, we are providing one-day
transit to forest preserves and other unpopulated areas. Furthermore, the addition of one
warehouse had decreasing effects on the total area coverage as the total number of warehouses
increased. This means that adding extra warehouses when the total number of warehouses is
around 30 is cost-inefficient. We found that only 23 warehouses allow for 95.89% coverage of
the United States (see Appendix B), and we can still provide one-day shipping to the vast
majority of the population. The following 23 ZIP codes fill 95.89% of the continental United
States:

Team #7211, Page 22 of 65

49710, 44017, 42021, 30122, 87008, 83325, 58620, 68005, 27343, 77331, 12108, 85324, 76008,
54106, 71004, 98220, 93601, 66402, 57051, 59010, 33825, 80020, 57650

The continental United States is about 314 million square miles (http://www.comparea.org/). We
know that 4.11 % is not covered by our model, which is 1.291 million square miles. In the
uncovered areas, we estimated the population density to be 10 people per square mile. This
means that one-day transit service would not be available to 1.291 million people, which is only
0.3997 % of the population of the continental United States.

Overall, while it takes a minimum of 32 warehouses to cover the entire continental
United States with one-day transit, we would suggest that the company use 23 warehouses at the
ZIP codes presented above to cover 99.6% of the continental United States population with
one-day transit, which produces almost the same result as covering the entire continental United
States with one-day transit in terms of business.

6.2 Optimal placement from part 1 vs part 2
Since the sets of ZIP codes form part 2 do much better in terms of average tax rates but cover
much less of the United States with one-day transit, we must to compare the profits from using
placement from part 1 and 2.

We can assume that the company will pay for its own sales tax (see assumption 10) and
that all people will be equally likely to buy the company’s products (see assumption 9).
Assuming our profit per year is for warehouses using warehouse distribution from part(w)q1 w

http://www.comparea.org/

Team #7211, Page 23 of 65

1, we can calculate the profit using warehouse distribution from part 2, which we will call (w)q2
in terms of (is the area fitness and is the average tax rate):q f t

(w) (w)q2 = q1 * f (w)1 * 100
100+t (w)1

f (w)2 * 100
100+t (w)2

q (w)1

q (w)2 = (54.664ln(w)−105.07)* 100
99.749+0.0701w

(0.0032w −0.292w +9.205w−0.0287)3 2 * 100
104.5988+0.0209w

The graph of this formula is as follows:

Note that as long as y < 1, , which means that for almost all values of wq (w)1

q (w)2 < 1 (w) q1 > (w)q2

except for , or for integers w . Thus, for any number of7.558 3.9323 < w < 4 8 33 ≤ w ≤ 4
warehouses except for , using the warehouse distribution from part 1 will be more8 33 ≤ w ≤ 4
profitable than the warehouse distribution of part 2.

Team #7211, Page 24 of 65

6.3 Optimal placement with the addition of clothing to inventory

The p-value for the t-test calculating the difference between the fitnesses in part 2 and part 3 is
about 0.946, meaning that there is no significant difference. Therefore, optimal placement will
not be affected very much by taking into account the clothing tax.

7 Model Strengths and Weaknesses

7.1 Strengths

1. Converting Number of Warehouses to Coverage
Our program found the optimal coverage for an inputted number of warehouses. This
allowed us to find the minimum number of warehouses to cover the whole continental
United States as well as the optimal number of warehouses to cover a significant portion
of the continental United States population.

2. Map Reliability
The simulation of uncertain conditions needed for the representation of an overall transit
day map would require many variables, i.e. traffic and weather, and increasing the
number of variables creates a greater uncertainty in the model. Our model reduced this
uncertainty by simply using pre-generated maps from the United Parcel Service. These
maps are guaranteed to be correct, and allow us to make minimal assumptions.

3. Efficiency
Our genetic algorithm for Part 1 was efficient. Downloading 1846 transit-day maps and
processing them outside the program allowed for us not to send requests to ups.com and
waste valuable time retrieving an image for every ZIP code. We also used an efficient
method for counting the amount of yellow pixels in an image by using a built-in function
from the Image class of the Python Imaging Library that quickly records the frequency of
colors in an image, which saved us more valuable time than iterating through every pixel
and counting how many of them were yellow.

Our algorithm was efficient enough that we could test thousands of generations in
a reasonable amount of time. While the genetic algorithm might not always find the most
optimal set of ZIP codes due to the indeterminate process, our algorithm still produced
one of the best possible set of ZIP codes almost every time.

7.2 Weaknesses

Team #7211, Page 25 of 65

1. Errors from random selection
Since our program used random selections of the 1846 ZIP codes, our program did not
produce the best set of ZIP codes all the time. While we used 2000 generations in part 1
and 250 generations in part 2 to reduce the effects of the random selection, increasing the
number of generations could not completely solve the problem. If the program selects a
suboptimal set of ZIP codes in the first 50 or so generations, it may never correct it. The
program will improve that set of ZIP codes, the chance that it completely fixes that set of
core ZIP codes is extremely small even with extremely large amounts of generations. At
times, the program would give a set of ZIP codes that covered less than a set of ZIP codes
with one less warehouse, which obviously does not make sense. To fix this, we reran the
program to get better optimization. While the process was slightly biased, we achieved a
more accurate and more sensible result.

2. Difficulty of achieving perfect optimization
Since our program produces one of the best possible set of ZIP codes but not the perfect
set of ZIP codes, we were not sure how good a set of ZIP codes was. Even if we did at
some point did achieve perfect optimization, we had no way of knowing it because of the
uncertainty caused by the genetic algorithm.

3. Overweighted tax
In our second and third genetic algorithms, our fitness function for an entire set of ZIP
codes gave too much prioritization to the tax rates. This resulted in much less importance
to spatial fitness than in our first genetic algorithm, meaning that our warehouse locations
failed to be in range of a large portion of the continental landmass.

Team #7211, Page 26 of 65

8 Code Analysis

8.1 Map Downloader Algorithm
(Full code in Appendix F)

The program begins by opening the CSV file containing the 1846 ZIP codes we used and
appending each code to ZIP_LIST, an array. Then, it begins to iterate through each ZIP code in
ZIP_LIST, where it saves the image from UPS using the function get_img(zip).

get_img(zip) functions by sending an HTTPS POST request to
“https://www.ups.com/maps/results” with data {‘zip’: zip, ‘stype’:
‘O’}, which means that the program requests the UPS server to generate a delivery time map
for the provided ZIP code where the times are for delivering from the ZIP code (as opposed to
delivering to the ZIP code). UPS will then return a full HTML page containing the image, and
the program uses the str.find() function to look for the URL to the map image.

Once the URL of the image is retrieved, the program uses the urlopen(url) function
from the urllib.request Python module to retrieve the binary data of the image. This data
is then stored as an img file, a variable of datatype PIL.Image (from Pillow, which is a
user-maintained version of the Python Imaging Library). img, which is originally in values of
RGB only, is converted to RGBA to allow for transparent pixels (which are needed for the
genetic algorithms). The program then iterates through every pixel in img, turning any pixel that
is not black (map borders) or yellow (one-day delivery zone color) into full transparency. img is
saved as a PNG file inside the folder “images”, which should be in the same directory as the
script.

8.2 Map Visualizer Algorithm

(Full code in Appendix D)

The Map Visualizer program begins by defining a new function get_img, which, opposed to
retrieving the map from the Internet, retrieves the edited map from the “images” folder that
was created in 7.1. A variable base_img is defined as the first image retrieved from the first
ZIP code from the zips array (provided by the user). The program iterates through the rest of
the ZIP codes in zips, overlaying their corresponding images on top of base_img, denoting
overlap by reducing the amount of red in the overlapping pixels (therefore giving it a more
greenish color). Once all images of the ZIP codes from zips are added, the program calls
method show() on base_img, which displays the map on the screen.

Team #7211, Page 27 of 65

8.3 Genetic Algorithm
(Full code in Appendix E/G)

The genetic algorithm begins by generating 10 arrays of random ZIP codes. It starts aw
repetitive process of sorting the 10 arrays by their generation using the fitness(zips)
function and mutating the best 2 arrays to replace the last 8 arrays with the mutate(zips)
function. Once it has repeated this process the user-given amount of times, it provides the best
array from the most recent generation of arrays.

The mutate(zips) function operates by choosing a random ZIP code from the array
of ZIP codes and replacing it with a new random ZIP code. This is how incremental change is
made through mutation in the genetic algorithm.

The fitness(zips) function works differently for the and algorithms. The f 1 f2 f 1

algorithm simply overlays all of the ZIP code images on top of one another and counts the total
amount of yellow pixels in the final image by using the PIL.Image function getcolors().
It then divides the amount of yellow pixels by the amount of total pixels () to get the1291pT = 9
fitness value. Meanwhile, the algorithm adds the individual ZIP code fitness values (seef2
Appendix C for formula) together, averages them by dividing the total by the amount of ZIP
codes, and then uses that value as well as the outside pixel count to find the total fitness value of
the set of ZIP codes.

8.4 Fitness Value Calculator Algorithm

(Full code in Appendix H)

This program essentially takes in ZIPS, an array containing ZIP codes, and calculates both the

and values for the array. It uses both fitness functions from both algorithms to determine f 1 f2
these values.

8.5 Other Pieces of Code

In Appendix I, a new sales tax table is included as a modification for the second genetic
algorithm to find new fitness values when clothing taxes are included. The only modifications to
make were to divide the sales tax of states which had no clothing tax by 2 (per Assumption 8).

In Appendix J, a small algorithm is included to find the average tax rate of a set of ZIP code

Team #7211, Page 28 of 65

9 References

"Complete List of United States Zip Codes." AggData . Geonames.org, 16 Feb. 2012. Web. 13

Nov. 2016.

Jaaskelainen, Liisa. "The Sporting Goods Industry." www.statista.com . Statista, 01 Nov. 2016.

Web. 13 Nov. 2016.

"The 2015 Tax Resource." Sales Tax Rates By State 2016 . Tax-rates.org, 23 Feb. 2016. Web. 13

Nov. 2016.

"United States Area." United States (Contiguous 48) Area . Natural Earth Data, 13 Oct. 2014.

Web. 13 Nov. 2016.

"United States. Ground Time-in-Transit Maps.” United Parcel Service. The United Parcel

Service, 10 July 2012. Web. 13 Nov. 2016.

"U.S. and World Population Clock Tell Us What You Think." Population Clock . United States

Department of Commerce, 1 Jan. 2016. Web. 13 Nov. 2016.

U.S., The Conversation. "Simulating Evolution: How Close Do Computer Models Come to

Reality?" The Huffington Post . TheHuffingtonPost.com, 6 May 2016. Web. 13 Nov.

2016.

"U.S. Zip Code Map." , USA Zip Codes by State . WhereIG, 3 Apr. 2013. Web. 13 Nov. 2016.

Team #7211, Page 29 of 65

10 Appendices

Appendix A

The following cities were used:
Sacramento, CA; Helena, MO; Arvada, CO; Madison, WI; Louisville, KY; El Paso, TX; Austin,
TX; Seattle, WA; Los Angeles, CA; Portland, OR; Boise, ID; Aurora, IL; Bismarck, ND;
Minneapolis, MN; Kansas City, KS; Sioux Falls, SD; Chandler, AZ; Sheridan, WY; Manchester,
NH; Albany, NY; Washington DC; Pittsburgh, PA; Shreveport, LA; Atlanta, GA; Orlando, FL;
Columbia, SC; Albuquerque, NM; Oklahoma City, OK; Island Falls, ME; and Detroit, MI.

Team #7211, Page 30 of 65

Appendix B

Team #7211, Page 31 of 65

Appendix C
Derivations of Part II formulas

Since sales tax is only applied when purchasing from the same state, it is clear that a warehouse
will prioritize selling to out-of-state locations in order to increase sales. It is also evident that
warehouses located in states with high taxes should have the least amount of intrastate pixels as
possible within its one-day delivery zone. Therefore, the fitness formula for individual ZIP codes
should weigh against state sales tax and weigh for exostate pixels.

In order to weigh against state sales tax, we can subtract state sales tax for the ZIP code
from the maximum sales tax and divide by the maximum sales tax.

t M
t − t M s

Therefore, the higher the sales tax, the lower this value will be. However, for California, which
has the maximum sales tax, this value would be the minimum, which is zero. Thus, we decided
to lock the minimum to .5 by altering this expression slightly.

2t M
2t − t M s

In order to weigh for outside pixels from the state of the ZIP code, we would simply divide the
number of outside pixels by the total number of pixels that are within the ZIP code’s reach.

p o
p T

Therefore, the final fitness formula for a singular ZIP code would be represented as such:

 (n)f II = 2t M
2t − t M s · p o

p T

Now, all of these individual ZIP code fitness values must be compiled together to form a singular
fitness value for the entire set of ZIP codes. However, consideration must also be given to the f I

value. These two different values need to be weighted in such a manner that the algorithm would
produce a >50% filled map with decent tax efficiency. After weighing them equally, we
discovered that the spatial fitness () was still given large priority, so we settled on weighing f I
the compiled ZIP code tax fitnesses to spatial fitness in a ratio of 3 : 1.

Team #7211, Page 32 of 65

The compiled value of all individual ZIP code fitness values should just simply be the
average of those values, like so:

w

 (n)∑
w

n=1
f II

Thus, the final formula for sales tax fitness would result in:

 f II = 4
3 ×(w

 (n)∑
w

n=1
f II) + 4

1 × f I

Team #7211, Page 33 of 65

Appendix D
Full code of Delivery Map Visualizer

COMAP 7211
Program that displays zip code map with overlap represented by
green

import PIL
import PIL.Image
import io
import numpy

zips = [] # INSERT ZIPS HERE

top_zips = []

def get_img(zip):

try:
img = PIL.Image.open("images/" + zip + ".png")
return img

except:
return False

base_img = None

def add_img(zip, img):

w, h = img.size
pix = img.load()
count = 0
overlap_count = 0
b_pix = base_img.load()
for x in range(w):

for y in range(h):
r, g, b, a = pix[x, y]
if (r == 255 and g == 209 and b == 36):

count += 1
b_r, b_g, b_b, b_a = b_pix[x, y]
if (b_g == g and b_b == b):

b_pix[x, y] = (b_r - 50, g, b)

Team #7211, Page 34 of 65

overlap_count += 1
else:

b_pix[x, y] = (r, g, b)
print(zip, "Count:", count, "Overlap:", overlap_count)
if count >= 6000:

top_zips.append((zip, count))

for zip in zips:
img = get_img(zip)
if img != False:

w, h = img.size
pix = img.load()
count = 0
if base_img == None:

base_img = img
for x in range(w):

for y in range(h):
r, g, b, a = pix[x, y]
if (r == 255 and g == 209 and b == 36):

count += 1
print(zip, ":", count-56)

else:
add_img(zip, img)

if count >= 6000:
top_zips.append((zip, count))

else:
print("Failed to open image of", zip)

base_img.show()
print(top_zips)

while True:

inp = input("add zip code or type q to quit: ")
if inp == "q":

break
elif int(inp) != None:

add_img(get_img(inp))
base_img.show()

Team #7211, Page 35 of 65

Appendix E
Full code of Genetic Algorithm to generate Delivery Map for Part I

COMAP 7211
Program that generates an efficient set of warehouse locations
through a 'genetic' process

import PIL
import PIL.Image
import io
import os
import numpy
import random

Zip List
ZIP_LIST = []
for file_name in os.listdir("images"):

ZIP_LIST.append(file_name[:5])

Constants
QTY = 30 # Amount of Warehouses
POP = 10 # Amount of Warehouse Location Sets per Generation
ITER = 2000 # Amount of iterations
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map
(excluding Alaska, Hawaii, P.R., and border pixels)
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone

Zip cache
zip_cache = {}

Function that determines if a zip code is legit by UPS
def is_legit_zip(zip):

return get_img(zip) != False

Function that generates a beginning list of 50 zip codes
def gen_random_zips(q):

random_zips = []
for j in range(q):

zip = ZIP_LIST[random.randint(0, len(ZIP_LIST)-1)]

Team #7211, Page 36 of 65

i = int(zip)
while (i >= 601 and i <= 988) or (i >= 96701 and i <=

96898) or (i >= 99501 and i <= 99950) or not is_legit_zip(zip):
zip = ZIP_LIST[random.randint(0,

len(ZIP_LIST)-1)]
i = int(zip)

random_zips.append(zip)
return random_zips

Function that retrieves the UPS delivery time map given the
zip code
def get_img(zip):

if zip in zip_cache:
return zip_cache[zip]

try:
img = PIL.Image.open("images/" + zip + ".png")

except:
return False

zip_cache[zip] = img

return img

Function that counts the number of times a certain color
occurs in an image
def count_color(img, color):

colors = img.getcolors()
pixels = None
for tup in colors:

if tup[1] == color:
return tup[0]

Function that determines the 'fitness' of a set of warehouse
locations (a.k.a. its efficiency) as a
float between 0. and 1.
def fitness(zips, show=False):

comb_img = get_img(zips[0]).copy()
for i in range(1, len(zips)-1):

Team #7211, Page 37 of 65

img = get_img(zips[i])
comb_img.paste(img, (0,0), img)

if show == True:
comb_img.show()

filled_pixels = count_color(comb_img, COLOR)
filled_pixels -= count_color(comb_img.crop((466, 213, 545,

352)), COLOR)
#print("Filled pixels:", filled_pixels)
del comb_img
return filled_pixels / TOTAL_PIXELS

Function that clones an array
def clone(array):

new_array = []
for elem in array:

new_array.append(elem)
return new_array

Function that replaces one zip code with another random one.
def mutate(zips):

new_zips = clone(zips)
ind = random.randint(0, len(new_zips)-1)
new_zips[ind] = gen_random_zips(1)[0]
return new_zips

gen = []
for i in range(POP):

gen.append(gen_random_zips(QTY))

for i in range(ITER):

gen = sorted(gen, key=fitness, reverse=True)
print("Generation:", i, "Best:", fitness(gen[0]))
for j in range(2, POP, 1):

gen[j] = mutate(gen[j%2])

print("FINAL BEST:", fitness(gen[0], show=True))
print(gen[0])

Appendix F

Team #7211, Page 38 of 65

Full code for retrieving UPS map images and saving them to hard-drive in a folder named
“images”

COMAP 7211
Downloads all of the zip code images

import requests
import PIL
import PIL.Image
import urllib.request as urllib
import io
import numpy
import random
import csv

Zip List
ZIP_LIST = []
with open('validpostalcodes.csv', 'r') as csvfile:

linereader = csv.reader(csvfile)
for row in linereader:

zip = row[0]
if len(zip) == 4:

zip = "0" + zip
ZIP_LIST.append(zip)

print(len(ZIP_LIST))

Function that determines if a zip code is legit by UPS
def is_legit_zip(zip):

try:
get_img(zip)
return True

except:
return False

Function that retrieves the UPS delivery time map given the
zip code
def get_img(zip):

Team #7211, Page 39 of 65

r = requests.post("https://www.ups.com/maps/results",
data={'zip': zip, 'stype': 'O'})

index = r.text.find('id="imgMap" src="')
index2 = r.text.find('" alt="US Time in Transit Map"')
url_ending = r.text[index+17:index2]
whole_url = "https://www.ups.com" + url_ending

fd = urllib.urlopen(whole_url)
image_file = io.BytesIO(fd.read())
img = PIL.Image.open(image_file)
img = img.convert('RGBA')

w, h = img.size
pix = img.load()
for x in range(w):

for y in range(h):
r, g, b, a = pix[x, y]
if (r != 255 or g != 209 or b != 36) and (r != 0

or g != 0 or b != 0):
pix[x, y] = (255, 255, 255, 0)

img.save("images/" + zip + ".png")

return img

i = 0
for zip in ZIP_LIST:

try:
get_img(zip)

except:
print("Image", i, "of", len(ZIP_LIST), "(Zip Code",

zip + ") failed.")
i += 1
print("Downloaded image", i, "of", len(ZIP_LIST), "(Zip

Code", zip + ")")

Appendix G

Team #7211, Page 40 of 65

Full code for second genetic algorithm, which generates a map for reducing tax liability for
customers

COMAP 7211
Program that generates an efficient set of warehouse locations
through a 'genetic' process
For use in Part II

import PIL
import PIL.Image
import io
import os
import numpy
import random

Zip Code to State Color
ZIP_COLOR = [

[(1000, 2799), (0, 0, 207, 255)], #MA
[(2800, 2999), (0, 0, 191, 255)], #RI
[(3000, 3899), (0, 0, 239, 255)], #NH
[(3900, 4999), (0, 0, 255, 255)], #ME
[(5000, 5999), (0, 0, 223, 255)], #VT
[(6000, 6999), (0, 0, 175, 255)], #CT
[(7000, 8999), (0, 0, 143, 255)], #NJ
[(10000, 14999), (0, 0, 159, 255)], #NY
[(15000, 19699), (0, 0, 127, 255)], #PA
[(19700, 19999), (0, 0, 111, 255)], #DE
[(20600, 21999), (0, 0, 95, 255)], #MD
[(22000, 24699), (0, 0, 63, 255)], #VA
[(24700, 26999), (0, 0, 79, 255)], #WV
[(27000, 28999), (0, 0, 47, 255)], #NC
[(29000, 29999), (0, 0, 31, 255)], #SC
[(30000, 31999), (0, 255, 0, 255)], #GA
[(32000, 34999), (0, 0, 15, 255)], #FL
[(35000, 36999), (0, 127, 0, 255)], #AL
[(37000, 38599), (0, 143, 0, 255)], #TN
[(38600, 39999), (0, 111, 0, 255)], #MS
[(40000, 42999), (0, 159, 0, 255)], #KY
[(43000, 45999), (0, 239, 0, 255)], #OH

Team #7211, Page 41 of 65

[(46000, 47999), (0, 207, 0, 255)], #IN
[(48000, 49999), (0, 223, 0, 255)], #MI
[(50000, 52999), (0, 47, 0, 255)], #IA
[(53000, 54999), (0, 191, 0, 255)], #WI
[(55000, 56799), (0, 31, 0, 255)], #MN
[(57000, 57999), (255, 0, 0, 255)], #SD
[(58000, 58999), (0, 15, 0, 255)], #ND
[(59000, 59999), (111, 0, 0, 255)], #MT
[(60000, 62999), (0, 175, 0, 255)], #IL
[(63000, 65999), (0, 63, 0, 255)], #MO
[(66000, 67999), (223, 0, 0, 255)], #KS
[(68000, 69999), (239, 0, 0, 255)], #NE
[(70000, 71599), (0, 95, 0, 255)], #LA
[(71600, 72999), (0, 79, 0, 255)], #AR
[(73000, 74999), (207, 0, 0, 255)], #OK
[(75000, 79999), (191, 0, 0, 255)], #TX
[(80000, 81999), (159, 0, 0, 255)], #CO
[(82000, 83199), (127, 0, 0, 255)], #WY
[(83200, 83999), (95, 0, 0, 255)], #ID
[(84000, 84999), (143, 0, 0, 255)], #UT
[(85000, 86999), (79, 0, 0, 255)], #AZ
[(87000, 88499), (175, 0, 0, 255)], #NM
[(88900, 89999), (63, 0, 0, 255)], #NV
[(90000, 96199), (47, 0, 0, 255)], #CA
[(97000, 97999), (31, 0, 0, 255)], #OR
[(98000, 99499), (15, 0, 0, 255)] #WA

]

State Color to State Tax
COLOR_TAX = {

(0, 0, 207, 255): 0.0625, #MA
(0, 0, 191, 255): 0.07, #RI
(0, 0, 239, 255): 0.0, #NH
(0, 0, 255, 255): 0.055, #ME
(0, 0, 223, 255): 0.06, #VT
(0, 0, 175, 255): 0.0635, #CT
(0, 0, 143, 255): 0.07, #NJ
(0, 0, 159, 255): 0.04, #NY
(0, 0, 127, 255): 0.06, #PA

Team #7211, Page 42 of 65

(0, 0, 111, 255): 0.0, #DE
(0, 0, 95, 255): 0.06, #MD
(0, 0, 63, 255): 0.053, #VA
(0, 0, 79, 255): 0.06, #WV
(0, 0, 47, 255): 0.0475, #NC
(0, 0, 31, 255): 0.06, #SC
(0, 255, 0, 255): 0.04, #GA
(0, 0, 15, 255): 0.06, #FL
(0, 127, 0, 255): 0.04, #AL
(0, 143, 0, 255): 0.07, #TN
(0, 111, 0, 255): 0.07, #MS
(0, 159, 0, 255): 0.06, #KY
(0, 239, 0, 255): 0.0575, #OH
(0, 207, 0, 255): 0.07, #IN
(0, 223, 0, 255): 0.06, #MI
(0, 47, 0, 255): 0.06, #IA
(0, 191, 0, 255): 0.05, #WI
(0, 31, 0, 255): 0.0688, #MN
(255, 0, 0, 255): 0.04, #SD
(0, 15, 0, 255): 0.05, #ND
(111, 0, 0, 255): 0.0, #MT
(0, 175, 0, 255): 0.0625, #IL
(0, 63, 0, 255): 0.0423, #MO
(223, 0, 0, 255): 0.065, #KS
(239, 0, 0, 255): 0.055, #NE
(0, 95, 0, 255): 0.04, #LA
(0, 79, 0, 255): 0.065, #AR
(207, 0, 0, 255): 0.045, #OK
(191, 0, 0, 255): 0.0625, #TX
(159, 0, 0, 255): 0.029, #CO
(127, 0, 0, 255): 0.04, #WY
(95, 0, 0, 255): 0.06, #ID
(143, 0, 0, 255): 0.0595, #UT
(79, 0, 0, 255): 0.056, #AZ
(175, 0, 0, 255): 0.0513, #NM
(63, 0, 0, 255): 0.0685, #NV
(47, 0, 0, 255): 0.075, #CA
(31, 0, 0, 255): 0.0, #OR
(15, 0, 0, 255): 0.065 #WA

Team #7211, Page 43 of 65

}

Zip List
ZIP_LIST = []
for file_name in os.listdir("images"):

ZIP_LIST.append(file_name[:5])

Constants
QTY = 30 # Amount of Warehouses
POP = 10 # Amount of Warehouse Location Sets per Generation
ITER = 250 # Amount of iterations
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map
(excluding Alaska, Hawaii, P.R., and border pixels)
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone
MAX_TAX = 0.075 # Maximum Tax (from California)

Zip cache
zip_cache = {}

Function that determines if a zip code is legit by UPS
def is_legit_zip(zip):

return get_img(zip) != False

Function that generates a beginning list of 50 zip codes
def gen_random_zips(q):

random_zips = []
for j in range(q):

zip = ZIP_LIST[random.randint(0, len(ZIP_LIST)-1)]
i = int(zip)
while (i >= 601 and i <= 988) or (i >= 96701 and i <=

96898) or (i >= 99501 and i <= 99950) or (i >= 20000 and i <=
20599) or not is_legit_zip(zip):

zip = ZIP_LIST[random.randint(0,
len(ZIP_LIST)-1)]

i = int(zip)
random_zips.append(zip)

return random_zips

Team #7211, Page 44 of 65

Function that retrieves the UPS delivery time map given the
zip code
def get_img(zip):

if zip in zip_cache:
return zip_cache[zip]

try:
img = PIL.Image.open("images/" + zip + ".png")

except:
return False

zip_cache[zip] = img

return img

Function that counts the number of times a certain color
occurs in an image
def count_color(img, color):

colors = img.getcolors()
pixels = None
for tup in colors:

if tup[1] == color:
return tup[0]

Function that determines the state color based on zip
def zip_to_color(zip):

i_zip = int(zip)
for zip_color in ZIP_COLOR:

if i_zip >= zip_color[0][0] and i_zip <=
zip_color[0][1]:

return zip_color[1]

Function that determines the 'fitness' of a set of warehouse
locations (a.k.a. its efficiency) as a
float between 0. and 1.
def fitness(zips, show=False):

zip_fitness = 0.
for zip in zips:

zip_color = zip_to_color(zip)

Team #7211, Page 45 of 65

zip_img = get_img(zip)
col_img = PIL.Image.open("colormap.png")
col_img.convert("RGBA")
col_img.paste(zip_img, (0,0), zip_img)
zip_tax = COLOR_TAX[zip_color]
other_pixels = 0
total_pixels = 0
for tup in col_img.getcolors():

color = tup[1]
if color != (0, 0, 0, 255) and color != (255,

255, 255, 0):
total_pixels += 1
if color != zip_color:

other_pixels += 1
zip_fitness += (2 * MAX_TAX - zip_tax) / (2 * MAX_TAX)

* other_pixels/total_pixels
zip_fitness /= len(zips)
comb_img = get_img(zips[0]).copy()
for i in range(1, len(zips)-1):

img = get_img(zips[i])
comb_img.paste(img, (0,0), img)

if show == True:
comb_img.show()

filled_pixels = count_color(comb_img, COLOR)
filled_pixels -= count_color(comb_img.crop((466, 213, 545,

352)), COLOR)
print("Filled pixels:", filled_pixels)
del comb_img
return 3*zip_fitness/4 + (filled_pixels / TOTAL_PIXELS) / 4

Function that clones an array
def clone(array):

new_array = []
for elem in array:

new_array.append(elem)
return new_array

Function that replaces one zip code with another random one.
def mutate(zips):

Team #7211, Page 46 of 65

new_zips = clone(zips)
ind = random.randint(0, len(new_zips)-1)
new_zips[ind] = gen_random_zips(1)[0]
return new_zips

gen = []
for i in range(POP):

gen.append(gen_random_zips(QTY))

for i in range(ITER):

gen = sorted(gen, key=fitness, reverse=True)
print("Generation:", i, "Best:", fitness(gen[0]))
for j in range(2, POP, 1):

gen[j] = mutate(gen[j%2])

print("FINAL BEST:", fitness(gen[0], show=True))
print(gen[0])

Team #7211, Page 47 of 65

Appendix H
Full code for calculating both and values given the set of zip codes f I f II

COMAP 7211
Program that determines the f1/f2 value (spatial fitness) of a
set of zip codes

import PIL
import PIL.Image
import io
import os
import numpy
import random

Zip Code to State Color
ZIP_COLOR = [

[(1000, 2799), (0, 0, 207, 255)], #MA
[(2800, 2999), (0, 0, 191, 255)], #RI
[(3000, 3899), (0, 0, 239, 255)], #NH
[(3900, 4999), (0, 0, 255, 255)], #ME
[(5000, 5999), (0, 0, 223, 255)], #VT
[(6000, 6999), (0, 0, 175, 255)], #CT
[(7000, 8999), (0, 0, 143, 255)], #NJ
[(10000, 14999), (0, 0, 159, 255)], #NY
[(15000, 19699), (0, 0, 127, 255)], #PA
[(19700, 19999), (0, 0, 111, 255)], #DE
[(20600, 21999), (0, 0, 95, 255)], #MD
[(22000, 24699), (0, 0, 63, 255)], #VA
[(24700, 26999), (0, 0, 79, 255)], #WV
[(27000, 28999), (0, 0, 47, 255)], #NC
[(29000, 29999), (0, 0, 31, 255)], #SC
[(30000, 31999), (0, 255, 0, 255)], #GA
[(32000, 34999), (0, 0, 15, 255)], #FL
[(35000, 36999), (0, 127, 0, 255)], #AL
[(37000, 38599), (0, 143, 0, 255)], #TN
[(38600, 39999), (0, 111, 0, 255)], #MS
[(40000, 42999), (0, 159, 0, 255)], #KY
[(43000, 45999), (0, 239, 0, 255)], #OH
[(46000, 47999), (0, 207, 0, 255)], #IN

Team #7211, Page 48 of 65

[(48000, 49999), (0, 223, 0, 255)], #MI
[(50000, 52999), (0, 47, 0, 255)], #IA
[(53000, 54999), (0, 191, 0, 255)], #WI
[(55000, 56799), (0, 31, 0, 255)], #MN
[(57000, 57999), (255, 0, 0, 255)], #SD
[(58000, 58999), (0, 15, 0, 255)], #ND
[(59000, 59999), (111, 0, 0, 255)], #MT
[(60000, 62999), (0, 175, 0, 255)], #IL
[(63000, 65999), (0, 63, 0, 255)], #MO
[(66000, 67999), (223, 0, 0, 255)], #KS
[(68000, 69999), (239, 0, 0, 255)], #NE
[(70000, 71599), (0, 95, 0, 255)], #LA
[(71600, 72999), (0, 79, 0, 255)], #AR
[(73000, 74999), (207, 0, 0, 255)], #OK
[(75000, 79999), (191, 0, 0, 255)], #TX
[(80000, 81999), (159, 0, 0, 255)], #CO
[(82000, 83199), (127, 0, 0, 255)], #WY
[(83200, 83999), (95, 0, 0, 255)], #ID
[(84000, 84999), (143, 0, 0, 255)], #UT
[(85000, 86999), (79, 0, 0, 255)], #AZ
[(87000, 88499), (175, 0, 0, 255)], #NM
[(88900, 89999), (63, 0, 0, 255)], #NV
[(90000, 96199), (47, 0, 0, 255)], #CA
[(97000, 97999), (31, 0, 0, 255)], #OR
[(98000, 99499), (15, 0, 0, 255)] #WA

]

State Color to State Tax
COLOR_TAX = {

(0, 0, 207, 255): 0.0625, #MA
(0, 0, 191, 255): 0.07, #RI
(0, 0, 239, 255): 0.0, #NH
(0, 0, 255, 255): 0.055, #ME
(0, 0, 223, 255): 0.06, #VT
(0, 0, 175, 255): 0.0635, #CT
(0, 0, 143, 255): 0.07, #NJ
(0, 0, 159, 255): 0.04, #NY
(0, 0, 127, 255): 0.06, #PA
(0, 0, 111, 255): 0.0, #DE

Team #7211, Page 49 of 65

(0, 0, 95, 255): 0.06, #MD
(0, 0, 63, 255): 0.053, #VA
(0, 0, 79, 255): 0.06, #WV
(0, 0, 47, 255): 0.0475, #NC
(0, 0, 31, 255): 0.06, #SC
(0, 255, 0, 255): 0.04, #GA
(0, 0, 15, 255): 0.06, #FL
(0, 127, 0, 255): 0.04, #AL
(0, 143, 0, 255): 0.07, #TN
(0, 111, 0, 255): 0.07, #MS
(0, 159, 0, 255): 0.06, #KY
(0, 239, 0, 255): 0.0575, #OH
(0, 207, 0, 255): 0.07, #IN
(0, 223, 0, 255): 0.06, #MI
(0, 47, 0, 255): 0.06, #IA
(0, 191, 0, 255): 0.05, #WI
(0, 31, 0, 255): 0.0688, #MN
(255, 0, 0, 255): 0.04, #SD
(0, 15, 0, 255): 0.05, #ND
(111, 0, 0, 255): 0.0, #MT
(0, 175, 0, 255): 0.0625, #IL
(0, 63, 0, 255): 0.0423, #MO
(223, 0, 0, 255): 0.065, #KS
(239, 0, 0, 255): 0.055, #NE
(0, 95, 0, 255): 0.04, #LA
(0, 79, 0, 255): 0.065, #AR
(207, 0, 0, 255): 0.045, #OK
(191, 0, 0, 255): 0.0625, #TX
(159, 0, 0, 255): 0.029, #CO
(127, 0, 0, 255): 0.04, #WY
(95, 0, 0, 255): 0.06, #ID
(143, 0, 0, 255): 0.0595, #UT
(79, 0, 0, 255): 0.056, #AZ
(175, 0, 0, 255): 0.0513, #NM
(63, 0, 0, 255): 0.0685, #NV
(47, 0, 0, 255): 0.075, #CA
(31, 0, 0, 255): 0.0, #OR
(15, 0, 0, 255): 0.065 #WA

}

Team #7211, Page 50 of 65

Constants
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map
(excluding Alaska, Hawaii, P.R., and border pixels)
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone
MAX_TAX = 0.075 # Maximum Tax (from California)
ZIPS = [] # INSERT ZIPS HERE

Zip List
ZIP_LIST = []
for file_name in os.listdir("images"):

ZIP_LIST.append(file_name[:5])

Zip cache
zip_cache = {}

Function that retrieves the UPS delivery time map given the
zip code
def get_img(zip):

if zip in zip_cache:
return zip_cache[zip]

try:
img = PIL.Image.open("images/" + zip + ".png")

except:
return False

zip_cache[zip] = img

return img

Function that counts the number of times a certain color
occurs in an image
def count_color(img, color):

colors = img.getcolors()
pixels = None
for tup in colors:

if tup[1] == color:
return tup[0]

Team #7211, Page 51 of 65

Function that determines the 'fitness' of a set of warehouse
locations (a.k.a. its efficiency) as a
float between 0. and 1.
def fitness1(zips, show=False):

comb_img = get_img(zips[0]).copy()
for i in range(1, len(zips)-1):

img = get_img(zips[i])
comb_img.paste(img, (0,0), img)

if show == True:
comb_img.show()

filled_pixels = count_color(comb_img, COLOR)
filled_pixels -= count_color(comb_img.crop((466, 213, 545,

352)), COLOR)
del comb_img
return filled_pixels / TOTAL_PIXELS

Function that determines the state color based on zip
def zip_to_color(zip):

i_zip = int(zip)
for zip_color in ZIP_COLOR:

if i_zip >= zip_color[0][0] and i_zip <=
zip_color[0][1]:

return zip_color[1]

Function that determines the 'fitness' of a set of warehouse
locations (a.k.a. its efficiency) as a
float between 0. and 1.
def fitness2(zips, show=False):

zip_fitness = 0.
for zip in zips:

zip_color = zip_to_color(zip)
zip_img = get_img(zip)
col_img = PIL.Image.open("colormap.png")
col_img.convert("RGBA")
col_img.paste(zip_img, mask=zip_img)
zip_tax = COLOR_TAX[zip_color]
other_pixels = 0
total_pixels = 0

Team #7211, Page 52 of 65

for tup in col_img.getcolors():
color = tup[1]
if color != (0, 0, 0, 255) and color != (255,

255, 255, 0):
total_pixels += 1
if color != zip_color:

other_pixels += 1
zip_fitness += (2 * MAX_TAX - zip_tax) / (2 * MAX_TAX)

* other_pixels/total_pixels
zip_fitness /= len(zips)
comb_img = get_img(zips[0]).copy()
for i in range(1, len(zips)-1):

img = get_img(zips[i])
comb_img.paste(img, (0,0), img)

if show == True:
comb_img.show()

filled_pixels = count_color(comb_img, COLOR)
filled_pixels -= count_color(comb_img.crop((466, 213, 545,

352)), COLOR)
del comb_img
return 3*zip_fitness/4 + (filled_pixels / TOTAL_PIXELS)/4

print("Calculating Fitness 1...")
print("Fitness 1", str(fitness1(ZIPS)*100) + "%")
print("Calculating Fitness 2...")
print("Fitness 2", str(fitness2(ZIPS)*100) + "%")

Appendix I
Modification for second genetic algorithm to include no clothing tax (Using assumption 8) to
fulfill Part III

State Color to State Tax
COLOR_TAX = {

(0, 0, 207, 255): 0.03125, #MA
(0, 0, 191, 255): 0.035, #RI
(0, 0, 239, 255): 0.0, #NH
(0, 0, 255, 255): 0.055, #ME
(0, 0, 223, 255): 0.03, #VT
(0, 0, 175, 255): 0.0635, #CT

Team #7211, Page 53 of 65

(0, 0, 143, 255): 0.035, #NJ
(0, 0, 159, 255): 0.02, #NY
(0, 0, 127, 255): 0.03, #PA
(0, 0, 111, 255): 0.0, #DE
(0, 0, 95, 255): 0.06, #MD
(0, 0, 63, 255): 0.053, #VA
(0, 0, 79, 255): 0.06, #WV
(0, 0, 47, 255): 0.0475, #NC
(0, 0, 31, 255): 0.06, #SC
(0, 255, 0, 255): 0.04, #GA
(0, 0, 15, 255): 0.06, #FL
(0, 127, 0, 255): 0.04, #AL
(0, 143, 0, 255): 0.07, #TN
(0, 111, 0, 255): 0.07, #MS
(0, 159, 0, 255): 0.06, #KY
(0, 239, 0, 255): 0.0575, #OH
(0, 207, 0, 255): 0.07, #IN
(0, 223, 0, 255): 0.06, #MI
(0, 47, 0, 255): 0.06, #IA
(0, 191, 0, 255): 0.05, #WI
(0, 31, 0, 255): 0.0344, #MN
(255, 0, 0, 255): 0.04, #SD
(0, 15, 0, 255): 0.05, #ND
(111, 0, 0, 255): 0.0, #MT
(0, 175, 0, 255): 0.0625, #IL
(0, 63, 0, 255): 0.0423, #MO
(223, 0, 0, 255): 0.065, #KS
(239, 0, 0, 255): 0.055, #NE
(0, 95, 0, 255): 0.04, #LA
(0, 79, 0, 255): 0.065, #AR
(207, 0, 0, 255): 0.045, #OK
(191, 0, 0, 255): 0.0625, #TX
(159, 0, 0, 255): 0.029, #CO
(127, 0, 0, 255): 0.04, #WY
(95, 0, 0, 255): 0.06, #ID
(143, 0, 0, 255): 0.0595, #UT
(79, 0, 0, 255): 0.056, #AZ
(175, 0, 0, 255): 0.0513, #NM
(63, 0, 0, 255): 0.0685, #NV

Team #7211, Page 54 of 65

(47, 0, 0, 255): 0.075, #CA
(31, 0, 0, 255): 0.0, #OR
(15, 0, 0, 255): 0.065 #WA

}

Appendix J
Code that finds average tax rate of set of zip codes

COMAP 7211
Program that generates an efficient set of warehouse locations
through a 'genetic' process
For use in Part II

import PIL
import PIL.Image
import io
import os
import numpy
import random

Zip Code to State Color
ZIP_COLOR = [

[(1000, 2799), (0, 0, 207, 255)], #MA
[(2800, 2999), (0, 0, 191, 255)], #RI
[(3000, 3899), (0, 0, 239, 255)], #NH
[(3900, 4999), (0, 0, 255, 255)], #ME
[(5000, 5999), (0, 0, 223, 255)], #VT
[(6000, 6999), (0, 0, 175, 255)], #CT
[(7000, 8999), (0, 0, 143, 255)], #NJ
[(10000, 14999), (0, 0, 159, 255)], #NY
[(15000, 19699), (0, 0, 127, 255)], #PA
[(19700, 19999), (0, 0, 111, 255)], #DE
[(20600, 21999), (0, 0, 95, 255)], #MD
[(22000, 24699), (0, 0, 63, 255)], #VA
[(24700, 26999), (0, 0, 79, 255)], #WV
[(27000, 28999), (0, 0, 47, 255)], #NC
[(29000, 29999), (0, 0, 31, 255)], #SC
[(30000, 31999), (0, 255, 0, 255)], #GA

Team #7211, Page 55 of 65

[(32000, 34999), (0, 0, 15, 255)], #FL
[(35000, 36999), (0, 127, 0, 255)], #AL
[(37000, 38599), (0, 143, 0, 255)], #TN
[(38600, 39999), (0, 111, 0, 255)], #MS
[(40000, 42999), (0, 159, 0, 255)], #KY
[(43000, 45999), (0, 239, 0, 255)], #OH
[(46000, 47999), (0, 207, 0, 255)], #IN
[(48000, 49999), (0, 223, 0, 255)], #MI
[(50000, 52999), (0, 47, 0, 255)], #IA
[(53000, 54999), (0, 191, 0, 255)], #WI
[(55000, 56799), (0, 31, 0, 255)], #MN
[(57000, 57999), (255, 0, 0, 255)], #SD
[(58000, 58999), (0, 15, 0, 255)], #ND
[(59000, 59999), (111, 0, 0, 255)], #MT
[(60000, 62999), (0, 175, 0, 255)], #IL
[(63000, 65999), (0, 63, 0, 255)], #MO
[(66000, 67999), (223, 0, 0, 255)], #KS
[(68000, 69999), (239, 0, 0, 255)], #NE
[(70000, 71599), (0, 95, 0, 255)], #LA
[(71600, 72999), (0, 79, 0, 255)], #AR
[(73000, 74999), (207, 0, 0, 255)], #OK
[(75000, 79999), (191, 0, 0, 255)], #TX
[(80000, 81999), (159, 0, 0, 255)], #CO
[(82000, 83199), (127, 0, 0, 255)], #WY
[(83200, 83999), (95, 0, 0, 255)], #ID
[(84000, 84999), (143, 0, 0, 255)], #UT
[(85000, 86999), (79, 0, 0, 255)], #AZ
[(87000, 88499), (175, 0, 0, 255)], #NM
[(88900, 89999), (63, 0, 0, 255)], #NV
[(90000, 96199), (47, 0, 0, 255)], #CA
[(97000, 97999), (31, 0, 0, 255)], #OR
[(98000, 99499), (15, 0, 0, 255)] #WA

]

State Color to State Tax
COLOR_TAX = {

(0, 0, 207, 255): 0.0625, #MA
(0, 0, 191, 255): 0.07, #RI
(0, 0, 239, 255): 0.0, #NH

Team #7211, Page 56 of 65

(0, 0, 255, 255): 0.055, #ME
(0, 0, 223, 255): 0.06, #VT
(0, 0, 175, 255): 0.0635, #CT
(0, 0, 143, 255): 0.07, #NJ
(0, 0, 159, 255): 0.04, #NY
(0, 0, 127, 255): 0.06, #PA
(0, 0, 111, 255): 0.0, #DE
(0, 0, 95, 255): 0.06, #MD
(0, 0, 63, 255): 0.053, #VA
(0, 0, 79, 255): 0.06, #WV
(0, 0, 47, 255): 0.0475, #NC
(0, 0, 31, 255): 0.06, #SC
(0, 255, 0, 255): 0.04, #GA
(0, 0, 15, 255): 0.06, #FL
(0, 127, 0, 255): 0.04, #AL
(0, 143, 0, 255): 0.07, #TN
(0, 111, 0, 255): 0.07, #MS
(0, 159, 0, 255): 0.06, #KY
(0, 239, 0, 255): 0.0575, #OH
(0, 207, 0, 255): 0.07, #IN
(0, 223, 0, 255): 0.06, #MI
(0, 47, 0, 255): 0.06, #IA
(0, 191, 0, 255): 0.05, #WI
(0, 31, 0, 255): 0.0688, #MN
(255, 0, 0, 255): 0.04, #SD
(0, 15, 0, 255): 0.05, #ND
(111, 0, 0, 255): 0.0, #MT
(0, 175, 0, 255): 0.0625, #IL
(0, 63, 0, 255): 0.0423, #MO
(223, 0, 0, 255): 0.065, #KS
(239, 0, 0, 255): 0.055, #NE
(0, 95, 0, 255): 0.04, #LA
(0, 79, 0, 255): 0.065, #AR
(207, 0, 0, 255): 0.045, #OK
(191, 0, 0, 255): 0.0625, #TX
(159, 0, 0, 255): 0.029, #CO
(127, 0, 0, 255): 0.04, #WY
(95, 0, 0, 255): 0.06, #ID
(143, 0, 0, 255): 0.0595, #UT

Team #7211, Page 57 of 65

(79, 0, 0, 255): 0.056, #AZ
(175, 0, 0, 255): 0.0513, #NM
(63, 0, 0, 255): 0.0685, #NV
(47, 0, 0, 255): 0.075, #CA
(31, 0, 0, 255): 0.0, #OR
(15, 0, 0, 255): 0.065 #WA

}

Zip List
ZIP_LIST = []
for file_name in os.listdir("images"):

ZIP_LIST.append(file_name[:5])

Constants
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map
(excluding Alaska, Hawaii, P.R., and border pixels)
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone
MAX_TAX = 0.075 # Maximum Tax (from California)

ZIPS = [] # INSERT ZIPS HERE

Zip Cache
zip_cache = {}

Function that retrieves the UPS delivery time map given the
zip code
def get_img(zip):

if zip in zip_cache:
return zip_cache[zip]

try:
img = PIL.Image.open("images/" + zip + ".png")

except:
return False

zip_cache[zip] = img

return img

Team #7211, Page 58 of 65

Function that counts the number of times a certain color
occurs in an image
def count_color(img, color):

colors = img.getcolors()
pixels = None
for tup in colors:

if tup[1] == color:
return tup[0]

Function that determines the state color based on zip
def zip_to_color(zip):

i_zip = int(zip)
for zip_color in ZIP_COLOR:

if i_zip >= zip_color[0][0] and i_zip <=
zip_color[0][1]:

return zip_color[1]

avg_tax_total = 0.
for zip in ZIPS:

zip_color = zip_to_color(zip)
avg_tax_total += COLOR_TAX[zip_color]

print(avg_tax_total/len(ZIPS))

Team #7211, Page 59 of 65

Appendix K
All of the data collected by the model. F1 represents area fitness, and F2 represents tax fitness.

Part I Data
15 - F1 = 81.60278669310228% F2 = 70.69736333994223%
['40339', '98901', '71006', '75103', '29301', '85533', '87002', '59001', '80010', '64018', '12007',
'57017', '83314', '93210', '26238']
16 - F1 = 86.27246935623446% F2 = 73.05561733905861%
['12015', '97004', '27343', '59831', '46103', '56324', '38602', '76008', '64018', '87001', '93210',
'82212', '83301', '31701', '85001', '80727']
17 - F1 = 88.78093130757687% F2 = 72.14229165042363%
['12108', '57051', '93623', '31701', '85001', '83301', '54101', '80201', '59054', '87002', '76043',
'23824', '71004', '66012', '40347', '98901', '67003']
18 - F1 = 89.38449573342389% F2 = 71.7544572666893%
['80020', '42021', '49010', '35007', '66012', '93601', '16910', '76001', '57435', '32754', '87011',
'98012', '85321', '83301', '27239', '54926', '59002', '31623']
19 - F1 = 92.3190675970249% F2 = 72.58045806671436%
['85321', '44003', '93210', '81220', '58027', '42022', '68019', '31772', '77412', '12025', '82922',
'98612', '75135', '54201', '59010', '27239', '87001', '13737', ‘22352’]
20 - F1 = 92.74079591635539% F2 = 75.52769897908885%
['42021', '59313', '12019', '27343', '31772', '97812', '87001', '66012', '38004', '59801', '80020',
'44001', '85321', '77363', '82922', '75135', '54101', '93210', '57003', '49805']
21- F1 = 93.93368459103307% F2 = 71.8858021001392%
['57435', '80020', '71019', '87002', '32099', '54409', '90001', '49010', '59054', '78837', '40010',
'75135', '26707', '85901', '29325', '83322', '98901', '12031', '89418', '64018', '94506']
22 - F1 = 94.69389096405998% F2 = 73.10983637737863%
['75103', '97801', '89406', '87002', '58201', '27501', '59054', '72354', '31701', '01001', '40339',
'85602', '80201', '93401', '66007', '57002', '16910', '48809', '83311', '54102', '77510', '48435']
23 - F1 = 95.88677963873766% F2 = 73.61734708359745%
['49710', '44017', '42021', '30122', '87008', '83325', '58620', '68005', '27343', '77331', '12108',
'85324', '76008', '54106', '71004', '98220', '93601', '66402', '57051', '59010', '33825', '80020',
'57650']
24 - F1 = 96.54840017088212% F2 = 73.25585004272051%
['93210', '95531', '58216', '67005', '68922', '51009', '42001', '83322', '15062', '59010', '98061',
'87002', '01810', '59831', '78837', '57017', '31772', '85602', '49010', '89406', '80201', '27212',
'71027', '29069']
25 - F1 = 97.22973787120308% F2 = 72.58943446780076%

Team #7211, Page 60 of 65

['59002', '98612', '71019', '83311', '42038', '83824', '56324', '89418', '79821', '93401', '32628',
'87512', '79033', '27214', '12025', '57002', '64018', '48809', '85611', '80201', '15012', '68005',
'78010', '30006', '46530']
26 - F1 = 97.77415079252062% F2 = 72.28392231351476%
['31701', '18056', '01002', '80020', '42033', '79018', '71065', '27214', '93623', '49001', '58009',
'69024', '83325', '78007', '57002', '87544', '59001', '95531', '85135', '79843', '89406', '66012',
'54926', '98236', '45701', '43408']
27 - F1 = 98.66690035162283% F2 = 74.20746582864645%
['99017', '85325', '68005', '97101', '40339', '77510', '83322', '57003', '66843', '48809', '12007',
'89440', '17017', '32008', '80010', '62009', '93426', '30002', '79843', '27201', '74829', '58477',
'54814', '87544', '71006', '59002', '39041']
28 - F1 = 98.89802937858059% F2 = 74.02629305893088%
['49010', '71019', '83325', '44003', '79830', '01810', '54926', '93426', '97004', '67005', '89701',
'87008', '78332', '27011', '66012', '32008', '58520', '22626', '59010', '36701', '42027', '83501',
'85324', '57012', '12007', '69001', '80436', '56323']
29 - F1 = 99.15435256487496% F2 = 72.85065710673598%
['98612', '92328', '53014', '18011', '30003', '74829', '79714', '71404', '57213', '78111', '42020',
'94503', '83325', '93013', '64018', '27006', '01810', '87011', '83802', '69135', '34601', '49719',
'80436', '56510', '59001', '40339', '85325', '26374', '12018']
30 - F1 = 97.8376838899782% F2 = 73.9827543058279%
['27343', '37707', '48627', '18403', '03570', '79731', '49902', '39039', '73010', '59002', '83314',
'94503', '97101', '85324', '52216', '83522', '68943', '46702', '31701', '57017', '91319', '79223',
'87001', '65018', '21520', '58009', '77404', '72636', '80422', '57621']
31 - F1 = 99.56731769834923% F2 = 74.43376490845827%
['30236', '56510', '93201', '42322', '67001', '50025', '83311', '49010', '01810', '97004', '89440',
'26148', '27201', '78610', '97801', '18039', '38602', '85324', '80010', '82601', '95605', '79745',
'54930', '33002', '69345', '59054', '65614', '87001', '57003', '70517', '43434']
32 - F1 = 100% F2 = 74.43376490845827%
['30236', '56510', '93201', '42322', '67001', '50025', '83311', '49010', '01810', '97004', '89440',
'26148', '27201', '78610', '97801', '18039', '38602', '85324', '80010', '82601', '95605', '79745',
'54930', '33002', '69345', '59054', '65614', '87001', '57003', '70517', '43434', '83463']

Part II Data
15 Warehouses - F1 = 48.247910527872406% F2 = 82.38531096530143 %
['59002', '19701', '59801', '03280', '97004', '80010', '59353', '64018', '03218', '97828', '71027',
'81325', '59001', '03215', '97701']
16 Warehouses - F1 = 41.48492184333614% F2 = 81.05873046083404%
['59001', '03280', '97901', '80422', '71065', '97101', '97102', '97014', '81321', '59036', '59353',
'35901', '59501', '59410', '59447', '59419']

Team #7211, Page 61 of 65

17 Warehouses - F1 = 47.8053696421334% F2 = 81.71604829288629%
['81433', '59326', '03215', '97101', '59223', '97497', '71404', '59054', '35901', '59222', '59501',
'59313', '57012', '80436', '59010', '59831', '59016']
18 Warehouses - F1 = 52.81681655365809% F2 = 81.148648582895 %
['59313', '59410', '59353', '97101', '30122', '66402', '97901', '59827', '57002', '81121', '59201',
'59010', '82922', '59001', '71019', '59223', '97107', '59801']
19 Warehouses - F1 = 50.4058450449661% F2 = 82.26988231387309%
['59416', '59011', '03031', '97901', '57012', '03570', '03280', '87008', '97497', '59501', '80422',
'97801', '59018', '35007', '59036', '65614', '59353', '59054', '03218']
20 Warehouses - F1 = 60.26881072613949% F2 = 82.06470268153487%
['59326', '56520', '59701', '03218', '59222', '82922', '40348', '03227', '30442', '59054', '97014',
'59062', '97001', '97828', '71404', '81433', '59832', '19701', '65634', '59416']
21 Warehouses - F1 = 68.81401233418409% F2 = 83.45826498830794%
['19701', '59420', '97801', '59010', '59641', '59353', '81321', '59711', '59523', '03215', '97101',
'45102', '85321', '03280', '57002', '64018', '59036', '75007', '82922', '30012', '59054']
22 Warehouses - F1 = 65.614354909843248% F2 = 82.9763157973354%
['59018', '45102', '97812', '59018', '03046', '97102', '31804', '59016', '59523', '81121', '59831',
'80422', '97812', '71019', '64018', '59002', '97101', '23014', '82930', '57031', '97710', '59901']
23 Warehouses - F1 = 66.43261657775684% F2 = 82.829893274874%
['80201', '97497', '66007', '85360', '81320', '03431', '59411', '97001', '63826', '03218', '76401',
'59831', '57002', '59054', '59084', '19701', '59313', '97828', '59353', '30018', '97004', '59018',
'71301']
24 Warehouses - F1 = 69.20287870655377 % F2 = 82.45488634330511 %
 ['59401', '31701', '97710', '97102', '71065', '58031', '63826', '80436', '27343', '68337', '59261',
'97004', '43408', '59420', '03280', '83336', '59410', '59002', '87009', '59416', '59801', '59701',
'59001', '03031']
25 Warehouses - F1 =71.79459092353025% F2 = 84.57664773088256%
['81030', '97812', '40348', '57003', '30230', '97010', '97101', '59054', '59222', '97497', '71019',
'97014', '59201', '59827', '85001', '59002', '87008', '19701', '83322', '97812', '03046', '59701',
'64018', '59053', '59420']
26 Warehouses - F1 = 65.65817002771358% F2 = 84.65492712231301%
['59313', '97812', '59222', '80511', '97102', '82922', '03431', '89418', '59222', '66012', '59223',
'59641', '59016', '57003', '03031', '59831', '03227', '31727', '97497', '19701', '81325', '59701',
'59447', '59010', '71065', '59313']
27 Warehouses - F1 = 78.48637872298474% F2 = 85.10307616222768%
['59003', '03431', '59201', '81321', '82930', '59523', '03227', '76238', '31316', '03570', '97901',
'59011', '80020', '59353', '97101', '97801', '85360', '59416', '19701', '71002', '68879', '57002',
'97710', '40348', '62613', '59062', '59062']
28 Warehouses - F1 = 75.60438597452104% F2 = 84.99395363648741%

Team #7211, Page 62 of 65

['59032', '35004', '97101', '59711', '59724', '43009', '59447', '76570', '27212', '97102', '03046',
'85001', '82922', '03218', '87002', '66012', '59313', '59827', '97801', '59353', '03431', '54601',
'03280', '59214', '80020', '59054', '59016', '59326']
29 Warehouses - F1 = 78.46118456364811% F2 = 86.10495131332584%
['97101', '19701', '80422', '85602', '97828', '03227', '59214', '97107', '59054', '03431', '57012',
'35901', '59410', '03031', '59711', '97801', '59832', '87011', '59420', '59201', '40355', '65634',
'59084', '59411', '59313', '71027', '93210', '83401', '97497']
30 Warehouses - F1 = 79.47552332650535% F2 = 83.520547498293%
['14029', '88121', '59435', '97101', '79025', '59401', '59016', '82322', '59641', '59901', '81101',
'64018', '71004', '59501', '03280', '63101', '35013', '23011', '85611', '59411', '59831', '93623',
'58009', '03227', '59010', '97014', '59831', '84023', '59084', '97901']
31 Warehouses - F1 = 82.79896156247604% F2 = 84.95296619707062%
['76238', '14041', '87544', '94503', '68019', '59058', '03570', '31805', '19701', '53015', '28018',
'97004', '03215', '57003', '83201', '97102', '85135', '97901', '59419', '59410', '97102', '59353',
'59901', '97107', '59010', '97001', '80020', '59827', '42027', '59801', '59801']
32 Warehouses - F1 = 86.60875661346683% F2 85.26468915336672%
['59724', '64018', '15012', '81201', '93601', '71004', '97812', '59214', '59201', '03431', '59326',
'57003', '85001', '03215', '59701', '68337', '59827', '59032', '81320', '59447', '59419', '42211',
'59261', '59201', '59003', '53501', '83314', '27013', '59054', '31701', '73052', '03218']

Part III Data
15 Warehouses - F1 = 43.79292591821757% F2 = 81.94823147955439%
['59001', '59801', '59054', '59214', '97828', '71002', '19701', '82922', '97497', '57012', '59002',
'03227', '59724', '97001', '97001']
16 Warehouses - F1 = 52.73904327918415% F2 = 80.74726081979604%
['97010', '71404', '03570', '59054', '35007', '81321', '57012', '80422', '15012', '59222', '97014',
'97801', '59214', '59701', '97828', '03280']
17 Warehouses - F1 = 53.82020133419505% F2 = 82.23446209825465%
['82930', '59313', '97102', '97004', '97101', '76230', '35013', '59901', '81121', '59032', '57012',
'59411', '19701', '03431', '59353', '59002', '59523']
18 Warehouses - F1= 48.78903725449387%, F2 = 83.05837042473458%
['59313', '82922', '19701', '57003', '97004', '81122', '59801', '97014', '97901', '71404', '59223',
'97004', '03280', '59724', '59901', '97001', '59501', '97014']
19 Warehouses - F1 = 56.45463408222059% F2 = 82.06102694160777%
['59831', '97828', '87008', '97710', '59827', '82212', '97101', '59010', '14029', '64421', '59084',
'30014', '03227', '56324', '59801', '97107', '71404', '03215', '59036']

Team #7211, Page 63 of 65

20 Warehouses - F1 = 64.79280542441205% F2 = 81.90320135610303%
['66012', '59002', '71019', '81121', '59711', '19701', '97497', '82930', '59201', '03570', '56324',
'97101', '97107', '97801', '80436', '59353', '97828', '40348', '12018', '59701']
21 Warehouses - F1 = 62.64801568610269% F2 = 82.8048610643828%
['71027', '59711', '59001', '97101', '59827', '81325', '82922', '03280', '68943', '97812', '59724',
'30122', '17005', '57017', '85324', '97014', '97701', '97801', '59401', '97901', '59831']
22 Warehouses - F1 = 67.03618100360386% F2 = 82.36359070544641%
['82930', '56510', '14009', '35013', '59901', '97497', '77801', '59831', '81611', '97828', '03046',
'59018', '27343', '68879', '59032', '59011', '81433', '85360', '97710', '59001', '03280', '59313']
23 Warehouses -F1 = 66.37017887853129% F2 = 84.48167515441543%
['59801', '59036', '03031', '59416', '59711', '03431', '64018', '80020', '59016', '14414', '84624',
'35004', '19701', '59002', '59016', '87008', '57003', '73301', '59214', '59711', '97101', '97828',
'59058']
24 Warehouses - F1 = 65.97145392207336% F2 = 83.39286348051834%
['03570', '97004', '59011', '59501', '65018', '59435', '82930', '57003', '71006', '59016', '59001',
'89406', '59214', '59058', '59062', '03280', '59054', '97701', '30012', '81325', '59832', '16028',
'81123', '59353']
25 Warehouses - F1 = 69.49206383980896% F2 = 83.89301595995223%
['68019', '59326', '85001', '59701', '40046', '17003', '59353', '97901', '81320', '59827', '31620',
'73530', '59523', '59401', '03227', '71004', '97107', '57002', '03218', '97004', '59827', '80511',
'59010', '59084', '59001']
26 Warehouses - F1 = 79.61354350374078% F2 = 84.39761664516595%
['40348', '59058', '59326', '83311', '03218', '59032', '59054', '59010', '59501', '87009', '80010',
'97107', '31701', '97101', '59411', '59326', '14029', '59313', '85324', '71404', '59801', '93623',
'68937', '59501', '57017', '12501']
27 Warehouses - F1: 78.03288385492546% F2: 83.91007281558323%
['03227', '10451', '57012', '59054', '89701', '97101', '03227', '59831', '97801', '97107', '53005',
'03215', '76539', '16001', '67005', '59801', '87002', '81235', '97102', '85931', '83322', '35013',
'97010', '59003', '97701', '59420', '97102']
28 Warehouses - F1 = 78.26182208541915% F2 = 83.38866980706906%
['87011', '42022', '75135', '59701', '59724', '97812', '59401', '64446', '16028', '97004', '19701',
'59001', '59054', '59036', '03570', '30439', '82922', '59003', '80436', '89701', '97001', '56520',
'28612', '03218', '85920', '59084', '59420', '97710']
29 Warehouses - F1 = 79.89067925644368% F2 = 84.64853188307645%
['63828', '59261', '03031', '59401', '73301', '59010', '97014', '54106', '97014', '59058', '81433',
'97710', '83217', '80422', '59058', '66407', '85001', '13737', '35007', '15012', '97801', '59010',
'73547', '97497', '28006', '57213', '59002', '19701', '59002']
30 Warehouses - F1 = 75.33710880590638% F2 = 85.32594386814325%

Team #7211, Page 64 of 65

['59641', '12108', '59435', '15006', '97901', '59003', '71019', '59222', '83203', '59711', '51501',
'31622', '59001', '97701', '56623', '59003', '87001', '59058', '63101', '19701', '59901', '59001',
'59062', '80010', '85324', '59011', '59010', '59214', '27343', '59801']
31 Warehouses - F1 = 78.18843040387333% F2 = 85.76968824612963%
['81122', '19701', '82212', '55111', '97107', '03570', '19701', '59214', '35007', '75135', '59401',
'59901', '59641', '03280', '68924', '59701', '85325', '63821', '28702', '59724', '57017', '44805',
'97004', '82930', '97107', '59222', '59419', '03570', '97701', '59058', '59831']
32 Warehouses - F1 = 83.89326439627126% F2 = 84.62019109906781%
['59223', '82922', '89701', '57002', '59313', '81321', '97010', '03570', '59001', '59831', '56208',
'97010', '23004', '31772', '97101', '63828', '43512', '14009', '80020', '85135', '73052', '03046',
'59223', '59058', '97710', '59214', '59641', '59435', '97828', '69135', '76634', '59701']

Average Tax Rates
1 represents data from the first genetic algorithm (prioritizing spatial fitness)
2 represents data from the second genetic algorithm (prioritizing less tax liability for customers)
‘W’ stands for ‘Warehouses’

15W

1) 4.9406666666666675%
2) 0.09353333333333333%

16W
1) 4.7025000000000004%
2) 0.08625%

17W
1) 5.010588235294118%
2) 1.047058823594119%

18W
1) 5.118333333333334%
2) 1.4111111111111111%

19W
1) 4.917368421052633%
2) 1.0663157894736841%

20W
1) 4.531500000000001%
2) 1.6005000000000002%

21W
1) 5.319523809523811%
2) 1.7490476190476188%

22W

Team #7211, Page 65 of 65

1) 5.1127272727272736%
2) 1.6854545454545452%

23W
1) 5.070869565217392%
2) 1.7556521739130432%

24W
1) 5.176250000000001%
2) 1.9691666666666666%

25W
1) 5.3436000000000004%
2) 1.6744000000000002%

26W
1) 5.431923076923077%
2) 1.3519230769230771%

27W
1) 5.091851851851852%
2) 1.9037037037037036%

28W
1) 5.139642857142857%
2) 1.7814285714285717%

29W
1) 5.387586206896552%
2) 1.7020689655172415%

30W
1) 5.095333333333333%
2) 2.269666666666664%

31W
1) 5.091612903225807%
2) 2.149355838709677%

29W
1) 5.12%
2) 0.227755000000004%

