
 

Summary 
A small business, whose main profits are online brick-and-mortar sales, is looking to start its 
shipping operations. It wishes to provide the continental United States with one-day transit by 
ground shipping with the United Parcel Service. Our task was to find the optimal warehouse 
placement to cover the continental United States with one-day transit while minimizing the 
number of warehouses. After finding the optimal placement, we considered state taxes as well as 
the tax cuts from the addition of clothing to the company’s inventory. 

Using transit day maps from the UPS website, we created a genetic algorithm to optimize 
the coverage of the United States using a certain number of warehouses. We found that it took 32 
warehouses to cover 100% of the continental United States with one-day transit. However, this 
was highly inefficient because it unnecessarily added warehouses in order to provide one-day 
transit to unpopulated areas like forest preserves. We found that with 23 warehouses, it was 
possible to cover 95.89% of the continental United States and provide one-day transit to 99.6% 
of the population, allowing us to cut down on nine warehouses while only losing one-day transit 
to 0.4% of the population. 

We then altered our program to take state tax rates into consideration when optimizing 
the warehouse placement. The new program produced sets containing mostly ZIP codes 
corresponding to places with low tax rates. However, this greatly reduced the total one-day 
transit coverage produced by the set of ZIP codes. 
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November 13, 2016  
 
Dear Esteemed Company President, 
 
We have decided that your business needs to expand. Extending your market to the entire nation 
will help you surpass the competition, and, thus, we have decided to pursue this strategy. We will 
achieve this by placing warehouses across the contiguous United States. Many problems arise, 
such as building costs, taxes, which raise our prices and thus decrease our demand, and the lack 
of clothing tax cuts in certain states. After 36 hours of deep consideration, we have figured out 
the optimal business strategy. Using a computer program, we have considered area covered, 
number of warehouses, state taxes, and tax exemptions for apparel in order to find the optimal 
number of warehouses and locations. 
 
When we use 32 warehouses, area coverage is 83.89% of continental U.S., and the average tax 
rate is 2.27%.The ZIP codes for the locations are as follows:  
59223, 82922, 89701, 57002, 59313, 81321, 97010, 03570, 59001, 59831, 56208, 97010, 23004, 
31772, 97101, 63828, 43512, 14009, 80020, 85135, 73052, 03046, 59223, 59058, 97710, 59214, 
59641, 59435, 97828, 69135, 76634, 59701 
 
However, we saw that while the tax rates were pleasantly low, the area covered was only 83.89% 
of the total landmass of the continental United States. An appealing option that disregards tax 
fitness is as follows: If 23 warehouses are built, area coverage will be 99.56% and the average 
tax rate will be 5.07% The ZIP codes are  
49710, 44017, 42021, 30122, 87008, 83325, 58620, 68005, 27343, 77331, 12108, 85324, 76008, 
54106, 71004, 98220, 93601, 66402, 57051, 59010, 33825, 80020, 57650 
 
As you can see, the first solution gives more weight to tax while the second gives weight to area 
while using less warehouses. The second solution raises the scope of our shipping coverage, it 
also will decrease demand and sales because of the higher tax rate. 
 
We have also included a formula that will tell you which option is better if you input the number 
of warehouses you plan to build.These are the most optimized solutions we came up with, and 
we hope they help. 
 
Sincerely, 
Team #7211  
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1 Introduction 

In the modern business world, maximizing profits is the highest priority. Businesses, especially 
small ones, should try to save money whenever possible. Along with cutting wages, removing 
competition, and increasing advertising and production, efficiency of company sites can save 
money. For example, a cheap 50 ft. by 100 ft. warehouse costs $35,000, but when coupled with 
the costs of maintenance and wages, increasing the number of warehouses significantly increases 
costs.  

Clearly, warehouses are expensive, making it necessary to place them in optimal 
locations. In this problem, we attempt to reduce the number of warehouses while shipping to the 
entirety of the continental US via one-day transit.  

In order to solve the problem, we used transit-time maps from www.ups.com/maps since 
the problem specifies one-day transit ground shipping via the United Parcel Service. The Python 
programs we created retrieved maps as image files from ups.com and allowed us to overlay 
combinations of ZIP codes and analyze the pixels of the resulting images. The only thing left to 
do was choose the best combinations.  

Since covering 100% of the continental United States is not cost efficient, we created a 
program that optimizes the one-day transit coverage for a given number of warehouses using 
genetic algorithms. This program allowed us to not only calculate the minimum number of 
warehouses needed for 100% coverage, but also find the best coverage given a variable number 
of warehouses. We in turn used the data we collected in order to find the optimal locations to 
build warehouses. 

In order to save the most amount of money, state clothing and sales tax rates were also 
taken into consideration when we chose warehouse locations. We modified the original program 
to weigh both sales and clothing tax rates and find optimal warehouse locations.  

http://www.ups.com/maps
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2 Problem Restatement/Interpretation 

Because a business is looking to expand its online operations, more warehouses should be built 
to provide shipping to the entirety of the continental United States. Our modeling team has 
access to The United Parcel Service's one-day transit maps for 1846 different ZIP codes in the 
United States as well as tax data for the 48 contiguous states.  

Using this information, our goal is to find the optimal placement of warehouses in order 
to maximize coverage while minimizing the number of warehouses and lowering sales and 
clothing tax rates for our customers by placing warehouses in low-tax states. 
 

3 Assumptions 

Assumption 1: Maps provided by UPS are accurate. 
Justification : The problem shows a map from the UPS, so we assumed that the UPS is a valid 
source. Additionally, the UPS is the standard for shipping in the US, and, thus, it is reasonable 
that our solution should be based on the UPS maps. Furthermore, any damage caused to the 
customers would be the responsibility of the UPS, not the business. 
 
Assumption 2: There should be around 30 warehouses built. 
Justification : We manually covered nearly 92.5% of the area of the continental United States 
with 1 day shipping by building 30 warehouses in the most logical places (See Appendix A for 
an image of this map). 
 
Assumption 3: ZIP codes in the same county essentially have the same one-day transit coverage. 
Justification : Places in the same county will likely share the same roads and routes. The 
difference in travel times to certain destinations is most likely measured in minutes and is 
insignificant in terms of transit-days. We confirmed this with the mapping function of ups.com; 
all the pairs of ZIP codes in the same county that we tried gave identical or nearly identical 
maps. 
 
Assumption 4: Maximizing the one-day transit coverage will inherently prioritize populated 
areas. 
Justification : One of the biggest factors for determining the range of the one-day transit coverage 
is access to roads, especially highways. Obviously, access is more readily available in large 
cities, which means one-day transit range will be higher in large cities. Our program inherently 
prioritizes populated areas since our program prioritizes ZIP codes with high one-day transit 
ranges. 
 



 
 

Team #7211, Page 7 of 65 

Assumption 5: Uncovered areas will be less populated areas.  
Justification : Unlike large cities, less populated areas have less access to roads and highways. 
Thus, it is safe to assume that if an area has little coverage, there is probably a small population 
there. 
 
Assumption 6: Covering 100% of the continental United States is possible but highly 
cost-inefficient. 
Justification : Many areas have poor access to roads, which makes one-day transit difficult and 
inefficient. For example, in order to get access to one-day transit inside the Pfeiffer Big Sur State 
Park in California, we would need to build a new warehouse just to service one small area. 
Clearly, this money could be spent somewhere else. Additionally, according to assumption 5, 
these hard to reach areas tend to have small populations, and, thus, it would also be inefficient to 
build warehouses solely to service an extremely small percent of the population. Instead of 
covering the continental US with one-day transit, it would be more efficient to service 99.95% of 
the population.  
 
Assumption 7: Optimization should be based on the population coverage, not the land area 
coverage. 
Justification : We are trying to maximize profits for this business, and simply increasing the 
amount of land we cover does not necessarily guarantee that we will increase profits. 
 
Assumption 8: Half of all sales are apparel. 
Justification:  According to www.statista.com, athletic apparel sales are 32.78 billion dollars per 
year. The recreation industry as a whole sells 63.65 billion dollars per year. Therefore, the 
apparel probably makes up around half of the sales for our company. Therefore, we can say that 
not paying clothing tax is the same as paying only half of our total sales tax regardless of item 
type. 
  
Assumption 9: All people have the same likeliness to buy the company’s product 
Justification : Since we are not given an inventory of what the company is selling, we have no 
way of knowing who our product will appeal to. Our best option and most logical option is to 
assume that all people have the same likeliness to buy the company’s product. 
 
Assumption 10: Companies will basically pay their own taxes 
Justification : The company must keep the same competitive price including tax, since customers 
can easily see tax when purchasing goods online, so if there is more tax, the company will lower 
the price and will basically be paying their own tax.  
 

http://www.statista.com/
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4 Model 
4.1 Goals of Model: 
 Find three sets of warehouse locations so that we can: 

- Cover at least 99.95% of the area of the contiguous United States using less than 33 
warehouses with 1 day shipping 

- Select optimal placement for the warehouses in order to minimize sales taxes while still 
serving at least 90% of the continental United States. 

- Select optimal placement for the warehouses in order to minimize clothing taxes while 
still serving at least 90% of the continental United States. 

 
4.2 Summary of Program 
First Program for Estimation: 
We created a program in Python that sent HTTP POST requests to the UPS  to find the area a 
warehouse could serve with one-day transit. Using this and by logically inputting ZIP codes, we 
estimated that there would need to be around 30 warehouses to achieve over 90% coverage.  
Second Program for Optimization: 
First we gave a program a list of images of the one-day transit zone from 1846 different counties 
across the United States. We then created a genetic algorithm to select the best warehouse 
locations to offer one-day transit coverage to as much of the country as possible for a given 
number of warehouses. Knowing that a coverage of 90% or more would require around 30 
warehouses from the first estimation, we inputted values around 30 into our program. 
 
4.3 Influences of Program 
 

4.3.1 Biological Evolution: Survival of 
the Fittest  
In any given biological generation, only the 
organisms with the best adaptations, 
specifically adaptations that increase 
reproductive success or survivability, will 
survive. In each new generation, a random 
mutation is likely to occur, and if this 
mutation increases reproductive success or 
survivability, the organisms with such 
mutation will be more likely to survive, and, 
thus, this mutation will probably be added to 
the gene pool. If the mutations decrease 
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reproductive success or survivability, the organisms will die, and the mutations are removed 
from the gene pool.  
 
4.3.2 Monte Carlo Method 
The Monte Carlo method involves algorithmic calculations using random sampling to obtain 
tangible results. The Monte Carlo Method can be used to simulate the mutations in a genome 
when the genes are passed from one generation to the next.  
 
4.4 Model Concept 
We needed to find optimal coverage for each number of warehouses. It would be unfeasible to 
test every single combination of ZIP codes and find the best combination, so we instead created a 
program that first picked a somewhat optimal set of ZIP codes and continued to improve that set 
of ZIP codes.  

We used HTTPS POST requests to take advantage of UPS’s delivery map generator to 
download the one-day transit day range of every county in the continental United States. We then 
selected ten sets of of random ZIP codes (warehouses), and we calculated the total percentage of 
the area covered. This percentage number was referred to as the area fitness number. When sets 
encompassed a smaller area, or had low area fitness, we removed them from the list (specifically, 
the eight worst sets). To replace the eight missing sets, we duplicated the each of the desired top 
two sets four times. We then chose a random ZIP code from each of the eight duplicates and 
replaced it with a random ZIP code. This produced a new generation of ten sets. We repeated this 
process many times until a desirable result was achieved. We repeated this procedure for 
different numbers of warehouses. 

For part two, we needed to take into account taxes. In order to do this, we changed the 
way that we calculated fitness. We added another variable called tax that would consider the 
region that would have to pay taxes. We then added the tax variable to the original fitness 
variable and changed the weighting to create a rating for the organism called tax fitness. Once 
again, we iterated through this procedure many times, but this time around, we used the tax 
fitness, not the area fitness, to eliminate the worst organisms. 
 
4.5 Variables 
 

w Number of warehouses used to generate map 

 p y  Number of yellow pixels on the map (pixels that are within the zone of one-day 
delivery) 

 p o  Number of pixels located elsewhere on the map besides the state where the 
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involved zip code is located. 

 p T  A constant representing the total number of pixels on the appropriate regions of 
the map (equivalent to 91,291) 

 t M  A constant representing the maximum amount of sales tax in a state (equivalent 
to .075 from California)  

 t n  The sales tax rate of the state of the n-th zip code of a set 

  f 1 Fitness value of a set of zip code locations for warehouses which represents the 
percentage of continental land mass that the delivery map fills. 

  f 2 Fitness value of a set of zip code locations for warehouses which prioritizes sales 
tax and slightly takes land mass into consideration. 

 (n)  f 2  Tax fitness value of the n-th zip code of a set of zip code locations. Used only in 
Part II. 

 
4.6 Formulas 
Our model for the total fitness when not taking tax into account follows as is: 

 

  f 1 = p y
p T

 
 
Taking state sales tax into consideration, our formula for fitness was split into two different 
parts: calculating a fitness for each individual zip code and using the average of those fitness 
values multiplied by the original spatial fitness to determine an overall fitness of the set of zip 
codes (derivations can be found in Appendix C): 
 

 (n)f 2 = 2t M
2t − t M  n · p o

p T
 

   f 2 = 4
3 ×( w

 (n)∑
w

n=1
f 2 )  + 4

1 × f 1  

 
4.7 Maps and ZIP codes 
We got a list of all ZIP codes in the United States from https://www.aggdata.com/node/86. We 
narrowed down this list from 40,000 ZIP codes to 1846 ZIP codes by only including one ZIP 
code from each county based on our assumption that zip codes in the same area deliver to the 

https://www.aggdata.com/node/86
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same locations. We then downloaded an image for each ZIP code that would only show the 
amount of area covered by one-day shipping. Doing this cut down the time required to retrieve 
images from ups.com, making our genetic algorithm much more efficient.  
 
4.8 Map Rendering 
We created a map rendering program to visualize the area covered with one day transit by an 
inputted set of ZIP codes. The program went through each ZIP code that was inputted, retrieved 
the map from ups.com, and cut out the colors except for the one-day transit range. The program 
then compiled the maps corresponding to the inputted ZIP codes into a single map. In overlapped 
pixels, the amount of red was reduced, allowing us to visualize overlapped areas as green.  

 
 
 
4.9 Genetic Algorithm 
We developed the algorithm to generate warehouse locations as an analogy of the system of 
natural selection. Algorithms such as these are often referred to as “genetic algorithms.” First, 
the program began with ten sets of random ZIP codes, with each set being similar to anw  
organism that has traits (the ZIP codes). During each iteration, or “generation,” it calculated the 
“fitness” value ( or ) of each set of ZIP codes. Sorting the sets by their fitness levels from f 1  f 2  
greatest to least, it removed the last eight and replaced them with four “mutations” of each of the 
top two. It “mutated” the top two by picking one zip code and replacing it with a random zip 
code. Once the last eight sets were replaced, it repeated the process. After a certain number of 
iterations, the process would stop, and it would output the most “fit” set from the most recent 
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generation as well as its fitness ranking. We recorded the set of zip codes and its corresponding 
fitness value in our data tables. 
 

5 Model Data and Results 

5.1 Part One - Resulting Model 
Finding optimal coverage for multiple numbers of warehouses allows us to view many options 
for the business so that we can select the most efficient and effective number of warehouses to be 
built. Our genetic algorithm ran through 2000 generations to produce the optimal percent 
covered. Our results are as follows: 
 

Warehouses Percent Covered  Warehouses Percent Covered 

15  81.6  24  96.55 

16 86.27  25 97.23 

17 88.78  26 97.77 

18 89.38  27 98.67 

19 92.32  28 98.9 

20 92.74  29 99.15 

21 93.93  30 99.31 

22 94.69  31 99.57 

23 95.89  32 100 

 
We graphed the data above, and it followed the cubic regression shown in Figure 3. The 
regression would be helpful when estimating best percentage covered for other numbers of 
warehouses. 
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The cubic regression function is as follows: 
 

 
 

According to our model, we would need at least 32 warehouses in order to service the entire 
continental United States with one-day transit. The following 32 ZIP codes completely fill the 
map: 
 
30236, 56510, 93201, 42322, 67001, 50025, 83311, 49010, 01810, 97004, 89440, 26148, 27201, 
78610, 97801, 18039, 38602, 85324, 80010, 82601, 95605, 79745, 54930, 33002, 69345, 59054, 

65614, 87001, 57003, 70517, 43434, 83463 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%200.0032x%5E3-0.292x%5E2%2B9.208x-0.0287%20%26%200%5Cleq%20x%3C32%20%5C%5C%20%20100%20%26%20x%5Cgeq32%20%5Cend%7Bmatrix%7D
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5.2 Part Two 

We then tweaked the model in order to find the optimal coverage while taking taxes into 
consideration. The taxes had 75 % weight while the area fitness had 25 % weight. The tax fitness 
data is shown below. 
 

Warehouses Tax Fitness  Warehouses Tax Fitness 

15 82.3853  24 82.4549 

16 81.0587  25 84.5766 

17 81.716  26 84.6549 

18 81.1486  27 85.1031 

19 82.2699  28 84.994 

20 82.0647  29 86.105 

21 83.4583  30 83.5205 

22 82.9763  31 84.953 

23 82.8299  32 85.2647 
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When the data above was graphed, it had a logarithmic regression with an value of 0.7356R2  
(Figure 5). 

 
 
The formula for this regression is as follows: 
 

 
Since the tax fitness is somewhat arbitrary, we also calculated that average tax rates of the 
optimization for part 1 and part 2 (figure 6): 
 

 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%205.6214%5Cln(x)%2B65.815%20%26%200%3Cx%3C438%20%5C%5C%20%20100%20%26%20x%5Cgeq438%5Cend%7Bmatrix%7D
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The formulas for the linear regressions above for part 1 and part 2, respectively, are: 
 

 
 

 
We also calculated the original fitness value using simply the area covered as a measure. Results 
are shown below: 
 

Warehouses Area Fitness  Warehouses Area Fitness 

15 48.2479  24 69.2029 

16 41.4849  25 71.7946 

17 47.8054  26 65.6582 

18 52.8168  27 78.4864 

19 50.4058  28 75.6044 

20 60.2688  29 78.4612 

21 68.814  30 79.4755 

22 65.6144  31 82.799 

23 66.4326  32 86.6088 

 
 
  

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D0.0209x%2B4.5988
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D0.0701x-0.0251
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The data was then used to calculate the area fitness, which was then graphed (Figure 7). The 
logarithmic regression had an value of 0.9262.R2  

 
 
The equation for this logarithmic regression is as follows: 

 

 
 
  

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%2054.664%5Cln(x)-105.07%26%200%3Cx%3C38%20%20%5C%5C%20%20100%20%26%20x%5Cgeq38%20%20%20%5Cend%7Bmatrix%7D
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We then graphed both tax fitnesses on the same graph, and this resulted in the following figure: 

 

 
 
We then used a t-test to compare the population averages for the tax fitnesses from the two parts. 
Results are shown in Figure 9. 
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5.3 Part Three 

The introduction of clothing slightly changes things. Since only eleven states have limited or no 
clothing tax, we want to place warehouses in those states. Thus, we modified the program in part 
two to halve the weight of the states that little clothing tax.  

The data when we ran the program is shown below: 
 

Warehouses Tax Fitness  Warehouses Tax Fitness 

15 81.94823  24 83.39286 

16 80.74726  25 83.89302 

17 82.23446  26 84.39762 

18 83.05837  27 83.91007 

19 82.06103  28 83.38867 

20 81.9032  29 84.64853 

21 82.80486  30 85.32594 

22 82.36359  31 85.76969 

23 84.48168  32 84.62019 

 
We then graphed the data (Figure 10) and there was a logarithmic regression with an value ofR2  
0.7652. 
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The graph above had the regression formula of: 
 

 
 

We then graphed the data from Part 2 on the same graph as the data from Part 3 (Figure 11). 
 

 
Finally, we ran a t-test (Figure 12) to see if there was a significant difference between the means. 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Df(x)%3D5.0264%5Cln(x)%2B67.646
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6 Discussion 

6.1 Optimal placement considering only coverage 

We can cover 100% of the continental United States using 32 warehouses, as mentioned in the 
results. However, this is highly inefficient. If we cover everything, we are providing one-day 
transit to forest preserves and other unpopulated areas. Furthermore, the addition of one 
warehouse had decreasing effects on the total area coverage as the total number of warehouses 
increased. This means that adding extra warehouses when the total number of warehouses is 
around 30 is cost-inefficient. We found that only 23 warehouses allow for 95.89% coverage of 
the United States (see Appendix B), and we can still provide one-day shipping to the vast 
majority of the population. The following 23 ZIP codes fill 95.89% of the continental United 
States:  
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49710, 44017, 42021, 30122, 87008, 83325, 58620, 68005, 27343, 77331, 12108, 85324, 76008, 
54106, 71004, 98220, 93601, 66402, 57051, 59010, 33825, 80020, 57650

 
 
The continental United States is about 314 million square miles (http://www.comparea.org/). We 
know that 4.11 % is not covered by our model, which is 1.291 million square miles. In the 
uncovered areas, we estimated the population density to be 10 people per square mile. This 
means that one-day transit service would not be available to 1.291 million people, which is only 
0.3997 % of the population of the continental United States.  

Overall, while it takes a minimum of 32 warehouses to cover the entire continental 
United States with one-day transit, we would suggest that the company use 23 warehouses at the 
ZIP codes presented above to cover 99.6% of the continental United States population with 
one-day transit, which produces almost the same result as covering the entire continental United 
States with one-day transit in terms of business. 

 
6.2 Optimal placement from part 1 vs part 2 
Since the sets of ZIP codes form part 2 do much better in terms of average tax rates but cover 
much less of the United States with one-day transit, we must to compare the profits from using 
placement from part 1 and 2.  

We can assume that the company will pay for its own sales tax (see assumption 10) and 
that all people will be equally likely to buy the company’s products (see assumption 9). 
Assuming our profit per year is  for  warehouses using warehouse distribution from part(w)q1 w  

http://www.comparea.org/
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1, we can calculate the profit using warehouse distribution from part 2, which we will call (w)q2  
in terms of   (  is the area fitness and is the average tax rate):q f  t  

(w) (w)q2 = q1 * f (w)1 * 100
100+t (w)1

f (w)2 * 100
100+t (w)2  

 

q (w)1

q (w)2 = (54.664ln(w)−105.07)* 100
99.749+0.0701w

(0.0032w −0.292w +9.205w−0.0287)3 2 * 100
104.5988+0.0209w

 
 
The graph of this formula is as follows:  
 

 
 

 
Note that as long as y  < 1, , which means that  for almost all values of wq (w)1

q (w)2 < 1 (w) q1 >  (w)q2  

except for , or   for integers w . Thus, for any number of7.558 3.9323 < w < 4 8 33 ≤ w ≤ 4  
warehouses except for , using the warehouse distribution from part 1 will be more8 33 ≤ w ≤ 4  
profitable than the warehouse distribution of part 2. 
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6.3 Optimal placement with the addition of clothing to inventory 

The p-value for the t-test calculating the difference between the fitnesses in part 2 and part 3 is 
about 0.946, meaning that there is no significant difference. Therefore, optimal placement will 
not be affected very much by taking into account the clothing tax. 

 

7 Model Strengths and Weaknesses 

7.1 Strengths 
 

1. Converting Number of Warehouses to Coverage 
Our program found the optimal coverage for an inputted number of warehouses. This 
allowed us to find the minimum number of warehouses to cover the whole continental 
United States as well as the optimal number of warehouses to cover a significant portion 
of the continental United States population.  

2. Map Reliability 
The simulation of uncertain conditions needed for the representation of an overall transit 
day map would require many variables, i.e. traffic and weather, and increasing the 
number of variables creates a greater uncertainty in the model. Our model reduced this 
uncertainty by simply using pre-generated maps from the United Parcel Service. These 
maps are guaranteed to be correct, and allow us to make minimal assumptions. 

3. Efficiency 
Our genetic algorithm for Part 1 was efficient. Downloading 1846 transit-day maps and 
processing them outside the program allowed for us not to send requests to ups.com and 
waste valuable time retrieving an image for every ZIP code. We also used an efficient 
method for counting the amount of yellow pixels in an image by using a built-in function 
from the Image class of the Python Imaging Library that quickly records the frequency of 
colors in an image, which saved us more valuable time than iterating through every pixel 
and counting how many of them were yellow. 

Our algorithm was efficient enough that we could test thousands of generations in 
a reasonable amount of time. While the genetic algorithm might not always find the most 
optimal set of ZIP codes due to the indeterminate process, our algorithm still produced 
one of the best possible set of ZIP codes almost every time.  

 
7.2 Weaknesses 
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1. Errors from random selection 
Since our program used random selections of the 1846 ZIP codes, our program did not 
produce the best set of ZIP codes all the time. While we used 2000 generations in part 1 
and 250 generations in part 2 to reduce the effects of the random selection, increasing the 
number of generations could not completely solve the problem. If the program selects a 
suboptimal set of ZIP codes in the first 50 or so generations, it may never correct it. The 
program will improve that set of ZIP codes, the chance that it completely fixes that set of 
core ZIP codes is extremely small even with extremely large amounts of generations. At 
times, the program would give a set of ZIP codes that covered less than a set of ZIP codes 
with one less warehouse, which obviously does not make sense. To fix this, we reran the 
program to get better optimization. While the process was slightly biased, we achieved a 
more accurate and more sensible result. 

2. Difficulty of achieving perfect optimization 
Since our program produces one of the best possible set of ZIP codes but not the perfect 
set of ZIP codes, we were not sure how good a set of ZIP codes was. Even if we did at 
some point did achieve perfect optimization, we had no way of knowing it because of the 
uncertainty caused by the genetic algorithm.  
 

3. Overweighted tax 
In our second and third genetic algorithms, our fitness function for an entire set of ZIP 
codes gave too much prioritization to the tax rates. This resulted in much less importance 
to spatial fitness than in our first genetic algorithm, meaning that our warehouse locations 
failed to be in range of a large portion of the continental landmass. 

 

  



 
 

Team #7211, Page 26 of 65 

8 Code Analysis 

8.1 Map Downloader Algorithm 
(Full code in Appendix F) 

 
The program begins by opening the CSV file containing the 1846 ZIP codes we used and 
appending each code to ZIP_LIST, an array. Then, it begins to iterate through each ZIP code in 
ZIP_LIST, where it saves the image from UPS using the function get_img(zip). 

get_img(zip) functions by sending an HTTPS POST request to 
“https://www.ups.com/maps/results” with data {‘zip’: zip, ‘stype’: 
‘O’}, which means that the program requests the UPS server to generate a delivery time map 
for the provided ZIP code where the times are for delivering from the ZIP code (as opposed to 
delivering to the ZIP code). UPS will then return a full HTML page containing the image, and 
the program uses the str.find() function to look for the URL to the map image. 

Once the URL of the image is retrieved, the program uses the urlopen(url) function 
from the urllib.request Python module to retrieve the binary data of the image. This data 
is then stored as an img file, a variable of datatype PIL.Image (from Pillow, which is a 
user-maintained version of the Python Imaging Library). img, which is originally in values of 
RGB only, is converted to RGBA to allow for transparent pixels (which are needed for the 
genetic algorithms). The program then iterates through every pixel in img, turning any pixel that 
is not black (map borders) or yellow (one-day delivery zone color) into full transparency. img is 
saved as a PNG file inside the folder “images”, which should be in the same directory as the 
script. 

 
8.2 Map Visualizer Algorithm 

(Full code in Appendix D) 
 

The Map Visualizer program begins by defining a new function get_img, which, opposed to 
retrieving the map from the Internet, retrieves the edited map from the “images” folder that 
was created in 7.1. A variable base_img is defined as the first image retrieved from the first 
ZIP code from the zips array (provided by the user). The program iterates through the rest of 
the ZIP codes in zips, overlaying their corresponding images on top of base_img, denoting 
overlap by reducing the amount of red in the overlapping pixels (therefore giving it a more 
greenish color). Once all images of the ZIP codes from zips are added, the program calls 
method show() on base_img, which displays the map on the screen. 
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8.3 Genetic Algorithm 
(Full code in Appendix E/G) 

 

The genetic algorithm begins by generating 10 arrays of  random ZIP codes. It starts aw  
repetitive process of sorting the 10 arrays by their generation using the fitness(zips) 
function and mutating the best 2 arrays to replace the last 8 arrays with the mutate(zips) 
function. Once it has repeated this process the user-given amount of times, it provides the best 
array from the most recent generation of arrays. 

The mutate(zips) function operates by choosing a random ZIP code from the array 
of ZIP codes and replacing it with a new random ZIP code. This is how incremental change is 
made through mutation in the genetic algorithm. 

The fitness(zips) function works differently for the and algorithms. The  f 1 f2  f 1

algorithm simply overlays all of the ZIP code images on top of one another and counts the total 
amount of yellow pixels in the final image by using the PIL.Image function getcolors(). 
It then divides the amount of yellow pixels by the amount of total pixels ( ) to get the1291pT = 9  
fitness value. Meanwhile, the  algorithm adds the individual ZIP code fitness values (seef2  
Appendix C for formula) together, averages them by dividing the total by the amount of ZIP 
codes, and then uses that value as well as the outside pixel count to find the total fitness value of 
the set of ZIP codes. 
 
8.4 Fitness Value Calculator Algorithm 

(Full code in Appendix H) 
 
This program essentially takes in ZIPS, an array containing ZIP codes, and calculates both the 

and values for the array. It uses both fitness functions from both algorithms to determine f 1 f2  
these values. 
 
8.5 Other Pieces of Code 
 
In Appendix I, a new sales tax table is included as a modification for the second genetic 
algorithm to find new fitness values when clothing taxes are included. The only modifications to 
make were to divide the sales tax of states which had no clothing tax by 2 (per Assumption 8). 
 
In Appendix J, a small algorithm is included to find the average tax rate of a set of ZIP code  
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10 Appendices 
 
Appendix A 
 

 
 
The following cities were used: 
Sacramento, CA; Helena, MO; Arvada, CO; Madison, WI; Louisville, KY; El Paso, TX; Austin, 
TX; Seattle, WA; Los Angeles, CA; Portland, OR; Boise, ID; Aurora, IL; Bismarck, ND; 
Minneapolis, MN; Kansas City, KS; Sioux Falls, SD; Chandler, AZ; Sheridan, WY; Manchester, 
NH; Albany, NY; Washington DC; Pittsburgh, PA; Shreveport, LA; Atlanta, GA; Orlando, FL; 
Columbia, SC; Albuquerque, NM; Oklahoma City, OK; Island Falls, ME; and Detroit, MI. 
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Appendix B 
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Appendix C 
Derivations of Part II formulas 
 
Since sales tax is only applied when purchasing from the same state, it is clear that a warehouse 
will prioritize selling to out-of-state locations in order to increase sales. It is also evident that 
warehouses located in states with high taxes should have the least amount of intrastate pixels as 
possible within its one-day delivery zone. Therefore, the fitness formula for individual ZIP codes 
should weigh against state sales tax and weigh for exostate pixels. 

In order to weigh against state sales tax, we can subtract state sales tax for the ZIP code 
from the maximum sales tax and divide by the maximum sales tax. 
 

t M
t − t M  s  

 
Therefore, the higher the sales tax, the lower this value will be. However, for California, which 
has the maximum sales tax, this value would be the minimum, which is zero. Thus, we decided 
to lock the minimum to .5 by altering this expression slightly. 
 

2t M
2t  − t M s  

 
In order to weigh for outside pixels from the state of the ZIP code, we would simply divide the 
number of outside pixels by the total number of pixels that are within the ZIP code’s reach. 
 

p o
p T

 

 
Therefore, the final fitness formula for a singular ZIP code would be represented as such: 
 

 (n)f II = 2t M
2t − t M  s · p o

p T
 

 
Now, all of these individual ZIP code fitness values must be compiled together to form a singular 
fitness value for the entire set of ZIP codes. However, consideration must also be given to the  f I

value. These two different values need to be weighted in such a manner that the algorithm would 
produce a >50% filled map with decent tax efficiency. After weighing them equally, we 
discovered that the spatial fitness ( ) was still given large priority, so we settled on weighing f I  
the compiled ZIP code tax fitnesses to spatial fitness in a ratio of 3 : 1. 
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The compiled value of all individual ZIP code fitness values should just simply be the 
average of those values, like so: 
 

w

 (n)∑
w

n=1
f II

 

 
Thus, the final formula for sales tax fitness would result in: 

 

   f II = 4
3 ×( w

 (n)∑
w

n=1
f II )  + 4

1 × f I  
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Appendix D 
Full code of Delivery Map Visualizer 
 
# COMAP 7211 
# Program that displays zip code map with overlap represented by 
green 
 
import PIL 
import PIL.Image 
import io 
import numpy 
 
zips = [] # INSERT ZIPS HERE 
 
top_zips = [] 
 
def get_img(zip): 

try: 
img = PIL.Image.open("images/" + zip + ".png") 
return img 

except: 
return False 

 
base_img = None 
 
def add_img(zip, img): 

w, h = img.size 
pix = img.load() 
count = 0 
overlap_count = 0 
b_pix = base_img.load() 
for x in range(w): 

for y in range(h): 
r, g, b, a = pix[x, y] 
if (r == 255 and g == 209 and b == 36): 

count += 1 
b_r, b_g, b_b, b_a = b_pix[x, y] 
if (b_g == g and b_b == b): 

b_pix[x, y] = (b_r - 50, g, b) 
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overlap_count += 1 
else: 

b_pix[x, y] = (r, g, b) 
print(zip, "Count:", count, "Overlap:", overlap_count) 
if count >= 6000: 

top_zips.append((zip, count)) 
 

for zip in zips: 
img = get_img(zip) 
if img != False: 

w, h = img.size 
pix = img.load() 
count = 0 
if base_img == None: 

base_img = img 
for x in range(w): 

for y in range(h): 
r, g, b, a = pix[x, y] 
if (r == 255 and g == 209 and b == 36): 

count += 1 
print(zip, ":", count-56) 

else: 
add_img(zip, img) 

if count >= 6000: 
top_zips.append((zip, count)) 

else: 
print("Failed to open image of", zip) 

 
base_img.show() 
print(top_zips) 
 
while True: 

inp = input("add zip code or type q to quit: ") 
if inp == "q": 

break 
elif int(inp) != None: 

add_img(get_img(inp)) 
base_img.show() 
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Appendix E 
Full code of Genetic Algorithm to generate Delivery Map for Part I 
 
# COMAP 7211 
# Program that generates an efficient set of warehouse locations 
through a 'genetic' process 
 
import PIL 
import PIL.Image 
import io 
import os 
import numpy 
import random 
 
# Zip List 
ZIP_LIST = [] 
for file_name in os.listdir("images"): 

ZIP_LIST.append(file_name[:5]) 
 

# Constants 
QTY = 30 # Amount of Warehouses 
POP = 10 # Amount of Warehouse Location Sets per Generation 
ITER = 2000 # Amount of iterations 
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map 
(excluding Alaska, Hawaii, P.R., and border pixels) 
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone 
 
# Zip cache 
zip_cache = {} 
 
# Function that determines if a zip code is legit by UPS 
def is_legit_zip(zip): 

return get_img(zip) != False 
 
# Function that generates a beginning list of 50 zip codes 
def gen_random_zips(q): 

random_zips = [] 
for j in range(q): 

zip = ZIP_LIST[random.randint(0, len(ZIP_LIST)-1)] 



 
 

Team #7211, Page 36 of 65 

i = int(zip) 
while (i >= 601 and i <= 988) or (i >= 96701 and i <= 

96898) or (i >= 99501 and i <= 99950) or not is_legit_zip(zip): 
zip = ZIP_LIST[random.randint(0, 

len(ZIP_LIST)-1)] 
i = int(zip) 

random_zips.append(zip) 
return random_zips 

 
# Function that retrieves the UPS delivery time map given the 
zip code 
def get_img(zip): 

if zip in zip_cache: 
return zip_cache[zip] 
 

try: 
img = PIL.Image.open("images/" + zip + ".png") 

except: 
return False 

 
zip_cache[zip] = img 
 
return img 
 

# Function that counts the number of times a certain color 
occurs in an image 
def count_color(img, color): 

colors = img.getcolors() 
pixels = None 
for tup in colors: 

if tup[1] == color: 
return tup[0] 

 
# Function that determines the 'fitness' of a set of warehouse 
locations (a.k.a. its efficiency) as a 
# float between 0. and 1. 
def fitness(zips, show=False): 

comb_img = get_img(zips[0]).copy() 
for i in range(1, len(zips)-1): 
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img = get_img(zips[i]) 
comb_img.paste(img, (0,0), img) 

if show == True: 
comb_img.show() 

filled_pixels = count_color(comb_img, COLOR) 
filled_pixels -= count_color(comb_img.crop((466, 213, 545, 

352)), COLOR) 
#print("Filled pixels:", filled_pixels) 
del comb_img 
return filled_pixels / TOTAL_PIXELS 
 

# Function that clones an array 
def clone(array): 

new_array = [] 
for elem in array: 

new_array.append(elem) 
return new_array 

 
# Function that replaces one zip code with another random one. 
def mutate(zips): 

new_zips = clone(zips) 
ind = random.randint(0, len(new_zips)-1) 
new_zips[ind] = gen_random_zips(1)[0] 
return new_zips 
 

gen = [] 
for i in range(POP): 

gen.append(gen_random_zips(QTY)) 
 
for i in range(ITER): 

gen = sorted(gen, key=fitness, reverse=True) 
print("Generation:", i, "Best:", fitness(gen[0])) 
for j in range(2, POP, 1): 

gen[j] = mutate(gen[j%2]) 
 

print("FINAL BEST:", fitness(gen[0], show=True)) 
print(gen[0]) 
 
Appendix F 
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Full code for retrieving UPS map images and saving them to hard-drive in a folder named 
“images” 
 
# COMAP 7211 
# Downloads all of the zip code images 
 
import requests 
import PIL 
import PIL.Image 
import urllib.request as urllib 
import io 
import numpy 
import random 
import csv 
 
# Zip List 
ZIP_LIST = [] 
with open('validpostalcodes.csv', 'r') as csvfile: 

linereader = csv.reader(csvfile) 
for row in linereader: 

zip = row[0] 
if len(zip) == 4: 

zip = "0" + zip 
ZIP_LIST.append(zip) 

 
print(len(ZIP_LIST)) 

 
# Function that determines if a zip code is legit by UPS 
def is_legit_zip(zip): 

try: 
get_img(zip) 
return True 

except: 
return False 

 
# Function that retrieves the UPS delivery time map given the 
zip code 
def get_img(zip): 
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r = requests.post("https://www.ups.com/maps/results", 
data={'zip': zip, 'stype': 'O'}) 

index = r.text.find('id="imgMap" src="') 
index2 = r.text.find('" alt="US Time in Transit Map"') 
url_ending = r.text[index+17:index2] 
whole_url = "https://www.ups.com" + url_ending 

 
fd = urllib.urlopen(whole_url) 
image_file = io.BytesIO(fd.read()) 
img = PIL.Image.open(image_file) 
img = img.convert('RGBA') 
 
w, h = img.size 
pix = img.load() 
for x in range(w): 

for y in range(h): 
r, g, b, a = pix[x, y] 
if (r != 255 or g != 209 or b != 36) and (r != 0 

or g != 0 or b != 0): 
pix[x, y] = (255, 255, 255, 0) 

 
img.save("images/" + zip + ".png") 
 
return img 

 
i = 0 
for zip in ZIP_LIST: 

try: 
get_img(zip) 

except: 
print("Image", i, "of", len(ZIP_LIST), "(Zip Code", 

zip + ") failed.") 
i += 1 
print("Downloaded image", i, "of", len(ZIP_LIST), "(Zip 

Code", zip + ")") 
 

 
Appendix G 
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Full code for second genetic algorithm, which generates a map for reducing tax liability for 
customers 
 
# COMAP 7211 
# Program that generates an efficient set of warehouse locations 
through a 'genetic' process 
# For use in Part II 
 
import PIL 
import PIL.Image 
import io 
import os 
import numpy 
import random 
 
# Zip Code to State Color 
ZIP_COLOR = [ 

[(1000, 2799), (0, 0, 207, 255)], #MA 
[(2800, 2999), (0, 0, 191, 255)], #RI 
[(3000, 3899), (0, 0, 239, 255)], #NH 
[(3900, 4999), (0, 0, 255, 255)], #ME 
[(5000, 5999), (0, 0, 223, 255)], #VT 
[(6000, 6999), (0, 0, 175, 255)], #CT 
[(7000, 8999), (0, 0, 143, 255)], #NJ 
[(10000, 14999), (0, 0, 159, 255)], #NY 
[(15000, 19699), (0, 0, 127, 255)], #PA 
[(19700, 19999), (0, 0, 111, 255)], #DE 
[(20600, 21999), (0, 0, 95, 255)], #MD 
[(22000, 24699), (0, 0, 63, 255)], #VA 
[(24700, 26999), (0, 0, 79, 255)], #WV 
[(27000, 28999), (0, 0, 47, 255)], #NC 
[(29000, 29999), (0, 0, 31, 255)], #SC 
[(30000, 31999), (0, 255, 0, 255)], #GA 
[(32000, 34999), (0, 0, 15, 255)], #FL 
[(35000, 36999), (0, 127, 0, 255)], #AL 
[(37000, 38599), (0, 143, 0, 255)], #TN 
[(38600, 39999), (0, 111, 0, 255)], #MS 
[(40000, 42999), (0, 159, 0, 255)], #KY 
[(43000, 45999), (0, 239, 0, 255)], #OH 
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[(46000, 47999), (0, 207, 0, 255)], #IN 
[(48000, 49999), (0, 223, 0, 255)], #MI 
[(50000, 52999), (0, 47, 0, 255)], #IA 
[(53000, 54999), (0, 191, 0, 255)], #WI 
[(55000, 56799), (0, 31, 0, 255)], #MN 
[(57000, 57999), (255, 0, 0, 255)], #SD 
[(58000, 58999), (0, 15, 0, 255)], #ND 
[(59000, 59999), (111, 0, 0, 255)], #MT 
[(60000, 62999), (0, 175, 0, 255)], #IL 
[(63000, 65999), (0, 63, 0, 255)], #MO 
[(66000, 67999), (223, 0, 0, 255)], #KS 
[(68000, 69999), (239, 0, 0, 255)], #NE 
[(70000, 71599), (0, 95, 0, 255)], #LA 
[(71600, 72999), (0, 79, 0, 255)], #AR 
[(73000, 74999), (207, 0, 0, 255)], #OK 
[(75000, 79999), (191, 0, 0, 255)], #TX 
[(80000, 81999), (159, 0, 0, 255)], #CO 
[(82000, 83199), (127, 0, 0, 255)], #WY 
[(83200, 83999), (95, 0, 0, 255)], #ID 
[(84000, 84999), (143, 0, 0, 255)], #UT 
[(85000, 86999), (79, 0, 0, 255)], #AZ 
[(87000, 88499), (175, 0, 0, 255)], #NM 
[(88900, 89999), (63, 0, 0, 255)], #NV 
[(90000, 96199), (47, 0, 0, 255)], #CA 
[(97000, 97999), (31, 0, 0, 255)], #OR 
[(98000, 99499), (15, 0, 0, 255)]  #WA 

] 
 
# State Color to State Tax 
COLOR_TAX = { 

(0, 0, 207, 255): 0.0625, #MA 
(0, 0, 191, 255): 0.07, #RI 
(0, 0, 239, 255): 0.0, #NH 
(0, 0, 255, 255): 0.055, #ME 
(0, 0, 223, 255): 0.06, #VT 
(0, 0, 175, 255): 0.0635, #CT 
(0, 0, 143, 255): 0.07, #NJ 
(0, 0, 159, 255): 0.04, #NY 
(0, 0, 127, 255): 0.06, #PA 
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(0, 0, 111, 255): 0.0, #DE 
(0, 0, 95, 255): 0.06, #MD 
(0, 0, 63, 255): 0.053, #VA 
(0, 0, 79, 255): 0.06, #WV 
(0, 0, 47, 255): 0.0475, #NC 
(0, 0, 31, 255): 0.06, #SC 
(0, 255, 0, 255): 0.04, #GA 
(0, 0, 15, 255): 0.06, #FL 
(0, 127, 0, 255): 0.04, #AL 
(0, 143, 0, 255): 0.07, #TN 
(0, 111, 0, 255): 0.07, #MS 
(0, 159, 0, 255): 0.06, #KY 
(0, 239, 0, 255): 0.0575, #OH 
(0, 207, 0, 255): 0.07, #IN 
(0, 223, 0, 255): 0.06, #MI 
(0, 47, 0, 255): 0.06, #IA 
(0, 191, 0, 255): 0.05, #WI 
(0, 31, 0, 255): 0.0688, #MN 
(255, 0, 0, 255): 0.04, #SD 
(0, 15, 0, 255): 0.05, #ND 
(111, 0, 0, 255): 0.0, #MT 
(0, 175, 0, 255): 0.0625, #IL 
(0, 63, 0, 255): 0.0423, #MO 
(223, 0, 0, 255): 0.065, #KS 
(239, 0, 0, 255): 0.055, #NE 
(0, 95, 0, 255): 0.04, #LA 
(0, 79, 0, 255): 0.065, #AR 
(207, 0, 0, 255): 0.045, #OK 
(191, 0, 0, 255): 0.0625, #TX 
(159, 0, 0, 255): 0.029, #CO 
(127, 0, 0, 255): 0.04, #WY 
(95, 0, 0, 255): 0.06, #ID 
(143, 0, 0, 255): 0.0595, #UT 
(79, 0, 0, 255): 0.056, #AZ 
(175, 0, 0, 255): 0.0513, #NM 
(63, 0, 0, 255): 0.0685, #NV 
(47, 0, 0, 255): 0.075, #CA 
(31, 0, 0, 255): 0.0, #OR 
(15, 0, 0, 255): 0.065  #WA 
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} 
 
# Zip List 
ZIP_LIST = [] 
for file_name in os.listdir("images"): 

ZIP_LIST.append(file_name[:5]) 
 

# Constants 
QTY = 30 # Amount of Warehouses 
POP = 10 # Amount of Warehouse Location Sets per Generation 
ITER = 250 # Amount of iterations 
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map 
(excluding Alaska, Hawaii, P.R., and border pixels) 
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone 
MAX_TAX = 0.075 # Maximum Tax (from California) 
 
# Zip cache 
zip_cache = {} 
 
# Function that determines if a zip code is legit by UPS 
def is_legit_zip(zip): 

return get_img(zip) != False 
 
# Function that generates a beginning list of 50 zip codes 
def gen_random_zips(q): 

random_zips = [] 
for j in range(q): 

zip = ZIP_LIST[random.randint(0, len(ZIP_LIST)-1)] 
i = int(zip) 
while (i >= 601 and i <= 988) or (i >= 96701 and i <= 

96898) or (i >= 99501 and i <= 99950) or (i >= 20000 and i <= 
20599) or not is_legit_zip(zip): 

zip = ZIP_LIST[random.randint(0, 
len(ZIP_LIST)-1)] 

i = int(zip) 
random_zips.append(zip) 

return random_zips 
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# Function that retrieves the UPS delivery time map given the 
zip code 
def get_img(zip): 

if zip in zip_cache: 
return zip_cache[zip] 
 

try: 
img = PIL.Image.open("images/" + zip + ".png") 

except: 
return False 

 
zip_cache[zip] = img 
 
return img 
 

# Function that counts the number of times a certain color 
occurs in an image 
def count_color(img, color): 

colors = img.getcolors() 
pixels = None 
for tup in colors: 

if tup[1] == color: 
return tup[0] 
 

# Function that determines the state color based on zip 
def zip_to_color(zip): 

i_zip = int(zip) 
for zip_color in ZIP_COLOR: 

if i_zip >= zip_color[0][0] and i_zip <= 
zip_color[0][1]: 

return zip_color[1] 
 

# Function that determines the 'fitness' of a set of warehouse 
locations (a.k.a. its efficiency) as a 
# float between 0. and 1. 
def fitness(zips, show=False): 

zip_fitness = 0. 
for zip in zips: 

zip_color = zip_to_color(zip) 
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zip_img = get_img(zip) 
col_img = PIL.Image.open("colormap.png") 
col_img.convert("RGBA") 
col_img.paste(zip_img, (0,0), zip_img) 
zip_tax = COLOR_TAX[zip_color] 
other_pixels = 0 
total_pixels = 0 
for tup in col_img.getcolors(): 

color = tup[1] 
if color != (0, 0, 0, 255) and color != (255, 

255, 255, 0): 
total_pixels += 1 
if color != zip_color: 

other_pixels += 1 
zip_fitness += (2 * MAX_TAX - zip_tax) / (2 * MAX_TAX) 

* other_pixels/total_pixels 
zip_fitness /= len(zips) 
comb_img = get_img(zips[0]).copy() 
for i in range(1, len(zips)-1): 

img = get_img(zips[i]) 
comb_img.paste(img, (0,0), img) 

if show == True: 
comb_img.show() 

filled_pixels = count_color(comb_img, COLOR) 
filled_pixels -= count_color(comb_img.crop((466, 213, 545, 

352)), COLOR) 
print("Filled pixels:", filled_pixels) 
del comb_img 
return 3*zip_fitness/4 + (filled_pixels / TOTAL_PIXELS) / 4 
 

# Function that clones an array 
def clone(array): 

new_array = [] 
for elem in array: 

new_array.append(elem) 
return new_array 

 
# Function that replaces one zip code with another random one. 
def mutate(zips): 
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new_zips = clone(zips) 
ind = random.randint(0, len(new_zips)-1) 
new_zips[ind] = gen_random_zips(1)[0] 
return new_zips 
 

gen = [] 
for i in range(POP): 

gen.append(gen_random_zips(QTY)) 
 
for i in range(ITER): 

gen = sorted(gen, key=fitness, reverse=True) 
print("Generation:", i, "Best:", fitness(gen[0])) 
for j in range(2, POP, 1): 

gen[j] = mutate(gen[j%2]) 
 

print("FINAL BEST:", fitness(gen[0], show=True)) 
print(gen[0]) 
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Appendix H 
Full code for calculating both and values given the set of zip codes f I  f II  
 
# COMAP 7211 
# Program that determines the f1/f2 value (spatial fitness) of a 
set of zip codes 
 
import PIL 
import PIL.Image 
import io 
import os 
import numpy 
import random 
 
# Zip Code to State Color 
ZIP_COLOR = [ 

[(1000, 2799), (0, 0, 207, 255)], #MA 
[(2800, 2999), (0, 0, 191, 255)], #RI 
[(3000, 3899), (0, 0, 239, 255)], #NH 
[(3900, 4999), (0, 0, 255, 255)], #ME 
[(5000, 5999), (0, 0, 223, 255)], #VT 
[(6000, 6999), (0, 0, 175, 255)], #CT 
[(7000, 8999), (0, 0, 143, 255)], #NJ 
[(10000, 14999), (0, 0, 159, 255)], #NY 
[(15000, 19699), (0, 0, 127, 255)], #PA 
[(19700, 19999), (0, 0, 111, 255)], #DE 
[(20600, 21999), (0, 0, 95, 255)], #MD 
[(22000, 24699), (0, 0, 63, 255)], #VA 
[(24700, 26999), (0, 0, 79, 255)], #WV 
[(27000, 28999), (0, 0, 47, 255)], #NC 
[(29000, 29999), (0, 0, 31, 255)], #SC 
[(30000, 31999), (0, 255, 0, 255)], #GA 
[(32000, 34999), (0, 0, 15, 255)], #FL 
[(35000, 36999), (0, 127, 0, 255)], #AL 
[(37000, 38599), (0, 143, 0, 255)], #TN 
[(38600, 39999), (0, 111, 0, 255)], #MS 
[(40000, 42999), (0, 159, 0, 255)], #KY 
[(43000, 45999), (0, 239, 0, 255)], #OH 
[(46000, 47999), (0, 207, 0, 255)], #IN 
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[(48000, 49999), (0, 223, 0, 255)], #MI 
[(50000, 52999), (0, 47, 0, 255)], #IA 
[(53000, 54999), (0, 191, 0, 255)], #WI 
[(55000, 56799), (0, 31, 0, 255)], #MN 
[(57000, 57999), (255, 0, 0, 255)], #SD 
[(58000, 58999), (0, 15, 0, 255)], #ND 
[(59000, 59999), (111, 0, 0, 255)], #MT 
[(60000, 62999), (0, 175, 0, 255)], #IL 
[(63000, 65999), (0, 63, 0, 255)], #MO 
[(66000, 67999), (223, 0, 0, 255)], #KS 
[(68000, 69999), (239, 0, 0, 255)], #NE 
[(70000, 71599), (0, 95, 0, 255)], #LA 
[(71600, 72999), (0, 79, 0, 255)], #AR 
[(73000, 74999), (207, 0, 0, 255)], #OK 
[(75000, 79999), (191, 0, 0, 255)], #TX 
[(80000, 81999), (159, 0, 0, 255)], #CO 
[(82000, 83199), (127, 0, 0, 255)], #WY 
[(83200, 83999), (95, 0, 0, 255)], #ID 
[(84000, 84999), (143, 0, 0, 255)], #UT 
[(85000, 86999), (79, 0, 0, 255)], #AZ 
[(87000, 88499), (175, 0, 0, 255)], #NM 
[(88900, 89999), (63, 0, 0, 255)], #NV 
[(90000, 96199), (47, 0, 0, 255)], #CA 
[(97000, 97999), (31, 0, 0, 255)], #OR 
[(98000, 99499), (15, 0, 0, 255)]  #WA 

] 
 
# State Color to State Tax 
COLOR_TAX = { 

(0, 0, 207, 255): 0.0625, #MA 
(0, 0, 191, 255): 0.07, #RI 
(0, 0, 239, 255): 0.0, #NH 
(0, 0, 255, 255): 0.055, #ME 
(0, 0, 223, 255): 0.06, #VT 
(0, 0, 175, 255): 0.0635, #CT 
(0, 0, 143, 255): 0.07, #NJ 
(0, 0, 159, 255): 0.04, #NY 
(0, 0, 127, 255): 0.06, #PA 
(0, 0, 111, 255): 0.0, #DE 
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(0, 0, 95, 255): 0.06, #MD 
(0, 0, 63, 255): 0.053, #VA 
(0, 0, 79, 255): 0.06, #WV 
(0, 0, 47, 255): 0.0475, #NC 
(0, 0, 31, 255): 0.06, #SC 
(0, 255, 0, 255): 0.04, #GA 
(0, 0, 15, 255): 0.06, #FL 
(0, 127, 0, 255): 0.04, #AL 
(0, 143, 0, 255): 0.07, #TN 
(0, 111, 0, 255): 0.07, #MS 
(0, 159, 0, 255): 0.06, #KY 
(0, 239, 0, 255): 0.0575, #OH 
(0, 207, 0, 255): 0.07, #IN 
(0, 223, 0, 255): 0.06, #MI 
(0, 47, 0, 255): 0.06, #IA 
(0, 191, 0, 255): 0.05, #WI 
(0, 31, 0, 255): 0.0688, #MN 
(255, 0, 0, 255): 0.04, #SD 
(0, 15, 0, 255): 0.05, #ND 
(111, 0, 0, 255): 0.0, #MT 
(0, 175, 0, 255): 0.0625, #IL 
(0, 63, 0, 255): 0.0423, #MO 
(223, 0, 0, 255): 0.065, #KS 
(239, 0, 0, 255): 0.055, #NE 
(0, 95, 0, 255): 0.04, #LA 
(0, 79, 0, 255): 0.065, #AR 
(207, 0, 0, 255): 0.045, #OK 
(191, 0, 0, 255): 0.0625, #TX 
(159, 0, 0, 255): 0.029, #CO 
(127, 0, 0, 255): 0.04, #WY 
(95, 0, 0, 255): 0.06, #ID 
(143, 0, 0, 255): 0.0595, #UT 
(79, 0, 0, 255): 0.056, #AZ 
(175, 0, 0, 255): 0.0513, #NM 
(63, 0, 0, 255): 0.0685, #NV 
(47, 0, 0, 255): 0.075, #CA 
(31, 0, 0, 255): 0.0, #OR 
(15, 0, 0, 255): 0.065  #WA 

} 
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# Constants 
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map 
(excluding Alaska, Hawaii, P.R., and border pixels) 
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone 
MAX_TAX = 0.075 # Maximum Tax (from California) 
ZIPS = [] # INSERT ZIPS HERE 
 
# Zip List 
ZIP_LIST = [] 
for file_name in os.listdir("images"): 

ZIP_LIST.append(file_name[:5]) 
 
# Zip cache 
zip_cache = {} 
 
# Function that retrieves the UPS delivery time map given the 
zip code 
def get_img(zip): 

if zip in zip_cache: 
return zip_cache[zip] 
 

try: 
img = PIL.Image.open("images/" + zip + ".png") 

except: 
return False 

 
zip_cache[zip] = img 
 
return img 
 

# Function that counts the number of times a certain color 
occurs in an image 
def count_color(img, color): 

colors = img.getcolors() 
pixels = None 
for tup in colors: 

if tup[1] == color: 
return tup[0] 
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# Function that determines the 'fitness' of a set of warehouse 
locations (a.k.a. its efficiency) as a 
# float between 0. and 1. 
def fitness1(zips, show=False): 

comb_img = get_img(zips[0]).copy() 
for i in range(1, len(zips)-1): 

img = get_img(zips[i]) 
comb_img.paste(img, (0,0), img) 

if show == True: 
comb_img.show() 

filled_pixels = count_color(comb_img, COLOR) 
filled_pixels -= count_color(comb_img.crop((466, 213, 545, 

352)), COLOR) 
del comb_img 
return filled_pixels / TOTAL_PIXELS 

 
# Function that determines the state color based on zip 
def zip_to_color(zip): 

i_zip = int(zip) 
for zip_color in ZIP_COLOR: 

if i_zip >= zip_color[0][0] and i_zip <= 
zip_color[0][1]: 

return zip_color[1] 
 

# Function that determines the 'fitness' of a set of warehouse 
locations (a.k.a. its efficiency) as a 
# float between 0. and 1. 
def fitness2(zips, show=False): 

zip_fitness = 0. 
for zip in zips: 

zip_color = zip_to_color(zip) 
zip_img = get_img(zip) 
col_img = PIL.Image.open("colormap.png") 
col_img.convert("RGBA") 
col_img.paste(zip_img, mask=zip_img) 
zip_tax = COLOR_TAX[zip_color] 
other_pixels = 0 
total_pixels = 0 
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for tup in col_img.getcolors(): 
color = tup[1] 
if color != (0, 0, 0, 255) and color != (255, 

255, 255, 0): 
total_pixels += 1 
if color != zip_color: 

other_pixels += 1 
zip_fitness += (2 * MAX_TAX - zip_tax) / (2 * MAX_TAX) 

* other_pixels/total_pixels 
zip_fitness /= len(zips) 
comb_img = get_img(zips[0]).copy() 
for i in range(1, len(zips)-1): 

img = get_img(zips[i]) 
comb_img.paste(img, (0,0), img) 

if show == True: 
comb_img.show() 

filled_pixels = count_color(comb_img, COLOR) 
filled_pixels -= count_color(comb_img.crop((466, 213, 545, 

352)), COLOR) 
del comb_img 
return 3*zip_fitness/4 + (filled_pixels / TOTAL_PIXELS)/4 
 

print("Calculating Fitness 1...") 
print("Fitness 1", str(fitness1(ZIPS)*100) + "%") 
print("Calculating Fitness 2...") 
print("Fitness 2", str(fitness2(ZIPS)*100) + "%") 
 

Appendix I 
Modification for second genetic algorithm to include no clothing tax (Using assumption 8) to 
fulfill Part III 
 
# State Color to State Tax 
COLOR_TAX = { 

(0, 0, 207, 255): 0.03125, #MA 
(0, 0, 191, 255): 0.035, #RI 
(0, 0, 239, 255): 0.0, #NH 
(0, 0, 255, 255): 0.055, #ME 
(0, 0, 223, 255): 0.03, #VT 
(0, 0, 175, 255): 0.0635, #CT 
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(0, 0, 143, 255): 0.035, #NJ 
(0, 0, 159, 255): 0.02, #NY 
(0, 0, 127, 255): 0.03, #PA 
(0, 0, 111, 255): 0.0, #DE 
(0, 0, 95, 255): 0.06, #MD 
(0, 0, 63, 255): 0.053, #VA 
(0, 0, 79, 255): 0.06, #WV 
(0, 0, 47, 255): 0.0475, #NC 
(0, 0, 31, 255): 0.06, #SC 
(0, 255, 0, 255): 0.04, #GA 
(0, 0, 15, 255): 0.06, #FL 
(0, 127, 0, 255): 0.04, #AL 
(0, 143, 0, 255): 0.07, #TN 
(0, 111, 0, 255): 0.07, #MS 
(0, 159, 0, 255): 0.06, #KY 
(0, 239, 0, 255): 0.0575, #OH 
(0, 207, 0, 255): 0.07, #IN 
(0, 223, 0, 255): 0.06, #MI 
(0, 47, 0, 255): 0.06, #IA 
(0, 191, 0, 255): 0.05, #WI 
(0, 31, 0, 255): 0.0344, #MN 
(255, 0, 0, 255): 0.04, #SD 
(0, 15, 0, 255): 0.05, #ND 
(111, 0, 0, 255): 0.0, #MT 
(0, 175, 0, 255): 0.0625, #IL 
(0, 63, 0, 255): 0.0423, #MO 
(223, 0, 0, 255): 0.065, #KS 
(239, 0, 0, 255): 0.055, #NE 
(0, 95, 0, 255): 0.04, #LA 
(0, 79, 0, 255): 0.065, #AR 
(207, 0, 0, 255): 0.045, #OK 
(191, 0, 0, 255): 0.0625, #TX 
(159, 0, 0, 255): 0.029, #CO 
(127, 0, 0, 255): 0.04, #WY 
(95, 0, 0, 255): 0.06, #ID 
(143, 0, 0, 255): 0.0595, #UT 
(79, 0, 0, 255): 0.056, #AZ 
(175, 0, 0, 255): 0.0513, #NM 
(63, 0, 0, 255): 0.0685, #NV 
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(47, 0, 0, 255): 0.075, #CA 
(31, 0, 0, 255): 0.0, #OR 
(15, 0, 0, 255): 0.065  #WA 

} 

 
Appendix J 
Code that finds average tax rate of set of zip codes 
 
# COMAP 7211 
# Program that generates an efficient set of warehouse locations 
through a 'genetic' process 
# For use in Part II 
 
import PIL 
import PIL.Image 
import io 
import os 
import numpy 
import random 
 
# Zip Code to State Color 
ZIP_COLOR = [ 

[(1000, 2799), (0, 0, 207, 255)], #MA 
[(2800, 2999), (0, 0, 191, 255)], #RI 
[(3000, 3899), (0, 0, 239, 255)], #NH 
[(3900, 4999), (0, 0, 255, 255)], #ME 
[(5000, 5999), (0, 0, 223, 255)], #VT 
[(6000, 6999), (0, 0, 175, 255)], #CT 
[(7000, 8999), (0, 0, 143, 255)], #NJ 
[(10000, 14999), (0, 0, 159, 255)], #NY 
[(15000, 19699), (0, 0, 127, 255)], #PA 
[(19700, 19999), (0, 0, 111, 255)], #DE 
[(20600, 21999), (0, 0, 95, 255)], #MD 
[(22000, 24699), (0, 0, 63, 255)], #VA 
[(24700, 26999), (0, 0, 79, 255)], #WV 
[(27000, 28999), (0, 0, 47, 255)], #NC 
[(29000, 29999), (0, 0, 31, 255)], #SC 
[(30000, 31999), (0, 255, 0, 255)], #GA 
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[(32000, 34999), (0, 0, 15, 255)], #FL 
[(35000, 36999), (0, 127, 0, 255)], #AL 
[(37000, 38599), (0, 143, 0, 255)], #TN 
[(38600, 39999), (0, 111, 0, 255)], #MS 
[(40000, 42999), (0, 159, 0, 255)], #KY 
[(43000, 45999), (0, 239, 0, 255)], #OH 
[(46000, 47999), (0, 207, 0, 255)], #IN 
[(48000, 49999), (0, 223, 0, 255)], #MI 
[(50000, 52999), (0, 47, 0, 255)], #IA 
[(53000, 54999), (0, 191, 0, 255)], #WI 
[(55000, 56799), (0, 31, 0, 255)], #MN 
[(57000, 57999), (255, 0, 0, 255)], #SD 
[(58000, 58999), (0, 15, 0, 255)], #ND 
[(59000, 59999), (111, 0, 0, 255)], #MT 
[(60000, 62999), (0, 175, 0, 255)], #IL 
[(63000, 65999), (0, 63, 0, 255)], #MO 
[(66000, 67999), (223, 0, 0, 255)], #KS 
[(68000, 69999), (239, 0, 0, 255)], #NE 
[(70000, 71599), (0, 95, 0, 255)], #LA 
[(71600, 72999), (0, 79, 0, 255)], #AR 
[(73000, 74999), (207, 0, 0, 255)], #OK 
[(75000, 79999), (191, 0, 0, 255)], #TX 
[(80000, 81999), (159, 0, 0, 255)], #CO 
[(82000, 83199), (127, 0, 0, 255)], #WY 
[(83200, 83999), (95, 0, 0, 255)], #ID 
[(84000, 84999), (143, 0, 0, 255)], #UT 
[(85000, 86999), (79, 0, 0, 255)], #AZ 
[(87000, 88499), (175, 0, 0, 255)], #NM 
[(88900, 89999), (63, 0, 0, 255)], #NV 
[(90000, 96199), (47, 0, 0, 255)], #CA 
[(97000, 97999), (31, 0, 0, 255)], #OR 
[(98000, 99499), (15, 0, 0, 255)]  #WA 

] 
 
# State Color to State Tax 
COLOR_TAX = { 

(0, 0, 207, 255): 0.0625, #MA 
(0, 0, 191, 255): 0.07, #RI 
(0, 0, 239, 255): 0.0, #NH 
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(0, 0, 255, 255): 0.055, #ME 
(0, 0, 223, 255): 0.06, #VT 
(0, 0, 175, 255): 0.0635, #CT 
(0, 0, 143, 255): 0.07, #NJ 
(0, 0, 159, 255): 0.04, #NY 
(0, 0, 127, 255): 0.06, #PA 
(0, 0, 111, 255): 0.0, #DE 
(0, 0, 95, 255): 0.06, #MD 
(0, 0, 63, 255): 0.053, #VA 
(0, 0, 79, 255): 0.06, #WV 
(0, 0, 47, 255): 0.0475, #NC 
(0, 0, 31, 255): 0.06, #SC 
(0, 255, 0, 255): 0.04, #GA 
(0, 0, 15, 255): 0.06, #FL 
(0, 127, 0, 255): 0.04, #AL 
(0, 143, 0, 255): 0.07, #TN 
(0, 111, 0, 255): 0.07, #MS 
(0, 159, 0, 255): 0.06, #KY 
(0, 239, 0, 255): 0.0575, #OH 
(0, 207, 0, 255): 0.07, #IN 
(0, 223, 0, 255): 0.06, #MI 
(0, 47, 0, 255): 0.06, #IA 
(0, 191, 0, 255): 0.05, #WI 
(0, 31, 0, 255): 0.0688, #MN 
(255, 0, 0, 255): 0.04, #SD 
(0, 15, 0, 255): 0.05, #ND 
(111, 0, 0, 255): 0.0, #MT 
(0, 175, 0, 255): 0.0625, #IL 
(0, 63, 0, 255): 0.0423, #MO 
(223, 0, 0, 255): 0.065, #KS 
(239, 0, 0, 255): 0.055, #NE 
(0, 95, 0, 255): 0.04, #LA 
(0, 79, 0, 255): 0.065, #AR 
(207, 0, 0, 255): 0.045, #OK 
(191, 0, 0, 255): 0.0625, #TX 
(159, 0, 0, 255): 0.029, #CO 
(127, 0, 0, 255): 0.04, #WY 
(95, 0, 0, 255): 0.06, #ID 
(143, 0, 0, 255): 0.0595, #UT 
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(79, 0, 0, 255): 0.056, #AZ 
(175, 0, 0, 255): 0.0513, #NM 
(63, 0, 0, 255): 0.0685, #NV 
(47, 0, 0, 255): 0.075, #CA 
(31, 0, 0, 255): 0.0, #OR 
(15, 0, 0, 255): 0.065  #WA 

} 
 
# Zip List 
ZIP_LIST = [] 
for file_name in os.listdir("images"): 

ZIP_LIST.append(file_name[:5]) 
 

# Constants 
TOTAL_PIXELS = 91291 # Total number of pixels in the UPS map 
(excluding Alaska, Hawaii, P.R., and border pixels) 
COLOR = (255, 209, 36, 255) # Color of one-day delivery zone 
MAX_TAX = 0.075 # Maximum Tax (from California) 
 
ZIPS = [] # INSERT ZIPS HERE 
 
# Zip Cache 
zip_cache = {} 
 
# Function that retrieves the UPS delivery time map given the 
zip code 
def get_img(zip): 

if zip in zip_cache: 
return zip_cache[zip] 
 

try: 
img = PIL.Image.open("images/" + zip + ".png") 

except: 
return False 

 
zip_cache[zip] = img 
 
return img 
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# Function that counts the number of times a certain color 
occurs in an image 
def count_color(img, color): 

colors = img.getcolors() 
pixels = None 
for tup in colors: 

if tup[1] == color: 
return tup[0] 
 

# Function that determines the state color based on zip 
def zip_to_color(zip): 

i_zip = int(zip) 
for zip_color in ZIP_COLOR: 

if i_zip >= zip_color[0][0] and i_zip <= 
zip_color[0][1]: 

return zip_color[1] 
 
avg_tax_total = 0.  
for zip in ZIPS: 

zip_color = zip_to_color(zip) 
avg_tax_total += COLOR_TAX[zip_color] 

 
print(avg_tax_total/len(ZIPS)) 
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Appendix K 
All of the data collected by the model. F1 represents area fitness, and F2 represents tax fitness. 
 
Part I Data 
15 - F1 = 81.60278669310228% F2 = 70.69736333994223% 
['40339', '98901', '71006', '75103', '29301', '85533', '87002', '59001', '80010', '64018', '12007', 
'57017', '83314', '93210', '26238'] 
16 - F1 = 86.27246935623446% F2 = 73.05561733905861% 
['12015', '97004', '27343', '59831', '46103', '56324', '38602', '76008', '64018', '87001', '93210', 
'82212', '83301', '31701', '85001', '80727'] 
17 - F1 = 88.78093130757687% F2 = 72.14229165042363% 
['12108', '57051', '93623', '31701', '85001', '83301', '54101', '80201', '59054', '87002', '76043', 
'23824', '71004', '66012', '40347', '98901', '67003'] 
18 - F1 = 89.38449573342389% F2 = 71.7544572666893% 
['80020', '42021', '49010', '35007', '66012', '93601', '16910', '76001', '57435', '32754', '87011', 
'98012', '85321', '83301', '27239', '54926', '59002', '31623'] 
19 - F1 = 92.3190675970249% F2 = 72.58045806671436% 
['85321', '44003', '93210', '81220', '58027', '42022', '68019', '31772', '77412', '12025', '82922', 
'98612', '75135', '54201', '59010', '27239', '87001', '13737', ‘22352’] 
20 - F1 = 92.74079591635539% F2 = 75.52769897908885% 
['42021', '59313', '12019', '27343', '31772', '97812', '87001', '66012', '38004', '59801', '80020', 
'44001', '85321', '77363', '82922', '75135', '54101', '93210', '57003', '49805'] 
21- F1 = 93.93368459103307% F2 = 71.8858021001392% 
['57435', '80020', '71019', '87002', '32099', '54409', '90001', '49010', '59054', '78837', '40010', 
'75135', '26707', '85901', '29325', '83322', '98901', '12031', '89418', '64018', '94506'] 
22 - F1 = 94.69389096405998% F2 = 73.10983637737863% 
['75103', '97801', '89406', '87002', '58201', '27501', '59054', '72354', '31701', '01001', '40339', 
'85602', '80201', '93401', '66007', '57002', '16910', '48809', '83311', '54102', '77510', '48435'] 
23 - F1 = 95.88677963873766% F2 = 73.61734708359745% 
['49710', '44017', '42021', '30122', '87008', '83325', '58620', '68005', '27343', '77331', '12108', 
'85324', '76008', '54106', '71004', '98220', '93601', '66402', '57051', '59010', '33825', '80020', 
'57650'] 
24 - F1 = 96.54840017088212% F2 = 73.25585004272051% 
['93210', '95531', '58216', '67005', '68922', '51009', '42001', '83322', '15062', '59010', '98061', 
'87002', '01810', '59831', '78837', '57017', '31772', '85602', '49010', '89406', '80201', '27212', 
'71027', '29069'] 
25 - F1 = 97.22973787120308% F2 = 72.58943446780076% 
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['59002', '98612', '71019', '83311', '42038', '83824', '56324', '89418', '79821', '93401', '32628', 
'87512', '79033', '27214', '12025', '57002', '64018', '48809', '85611', '80201', '15012', '68005', 
'78010', '30006', '46530'] 
26 - F1 = 97.77415079252062% F2 = 72.28392231351476% 
['31701', '18056', '01002', '80020', '42033', '79018', '71065', '27214', '93623', '49001', '58009', 
'69024', '83325', '78007', '57002', '87544', '59001', '95531', '85135', '79843', '89406', '66012', 
'54926', '98236', '45701', '43408'] 
27 - F1 = 98.66690035162283% F2 = 74.20746582864645% 
['99017', '85325', '68005', '97101', '40339', '77510', '83322', '57003', '66843', '48809', '12007', 
'89440', '17017', '32008', '80010', '62009', '93426', '30002', '79843', '27201', '74829', '58477', 
'54814', '87544', '71006', '59002', '39041'] 
28 - F1 = 98.89802937858059% F2 = 74.02629305893088% 
['49010', '71019', '83325', '44003', '79830', '01810', '54926', '93426', '97004', '67005', '89701', 
'87008', '78332', '27011', '66012', '32008', '58520', '22626', '59010', '36701', '42027', '83501', 
'85324', '57012', '12007', '69001', '80436', '56323'] 
29 - F1 = 99.15435256487496% F2 = 72.85065710673598% 
['98612', '92328', '53014', '18011', '30003', '74829', '79714', '71404', '57213', '78111', '42020', 
'94503', '83325', '93013', '64018', '27006', '01810', '87011', '83802', '69135', '34601', '49719', 
'80436', '56510', '59001', '40339', '85325', '26374', '12018'] 
30 - F1 = 97.8376838899782% F2 = 73.9827543058279% 
['27343', '37707', '48627', '18403', '03570', '79731', '49902', '39039', '73010', '59002', '83314', 
'94503', '97101', '85324', '52216', '83522', '68943', '46702', '31701', '57017', '91319', '79223', 
'87001', '65018', '21520', '58009', '77404', '72636', '80422', '57621'] 
31 - F1 = 99.56731769834923% F2 = 74.43376490845827% 
['30236', '56510', '93201', '42322', '67001', '50025', '83311', '49010', '01810', '97004', '89440', 
'26148', '27201', '78610', '97801', '18039', '38602', '85324', '80010', '82601', '95605', '79745', 
'54930', '33002', '69345', '59054', '65614', '87001', '57003', '70517', '43434'] 
32 - F1 = 100% F2 = 74.43376490845827% 
['30236', '56510', '93201', '42322', '67001', '50025', '83311', '49010', '01810', '97004', '89440', 
'26148', '27201', '78610', '97801', '18039', '38602', '85324', '80010', '82601', '95605', '79745', 
'54930', '33002', '69345', '59054', '65614', '87001', '57003', '70517', '43434', '83463'] 

 
Part II Data 
15 Warehouses - F1 = 48.247910527872406% F2 = 82.38531096530143 % 
['59002', '19701', '59801', '03280', '97004', '80010', '59353', '64018', '03218', '97828', '71027', 
'81325', '59001', '03215', '97701'] 
16 Warehouses - F1 = 41.48492184333614% F2 = 81.05873046083404% 
['59001', '03280', '97901', '80422', '71065', '97101', '97102', '97014', '81321', '59036', '59353', 
'35901', '59501', '59410', '59447', '59419'] 
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17 Warehouses - F1 = 47.8053696421334% F2 = 81.71604829288629% 
['81433', '59326', '03215', '97101', '59223', '97497', '71404', '59054', '35901', '59222', '59501', 
'59313', '57012', '80436', '59010', '59831', '59016'] 
18 Warehouses - F1 = 52.81681655365809% F2 = 81.148648582895 % 
['59313', '59410', '59353', '97101', '30122', '66402', '97901', '59827', '57002', '81121', '59201', 
'59010', '82922', '59001', '71019', '59223', '97107', '59801'] 
19 Warehouses - F1 = 50.4058450449661% F2 = 82.26988231387309% 
['59416', '59011', '03031', '97901', '57012', '03570', '03280', '87008', '97497', '59501', '80422', 
'97801', '59018', '35007', '59036', '65614', '59353', '59054', '03218'] 
20 Warehouses - F1 = 60.26881072613949% F2 = 82.06470268153487%  
['59326', '56520', '59701', '03218', '59222', '82922', '40348', '03227', '30442', '59054', '97014', 
'59062', '97001', '97828', '71404', '81433', '59832', '19701', '65634', '59416'] 
21 Warehouses - F1 = 68.81401233418409% F2 = 83.45826498830794% 
['19701', '59420', '97801', '59010', '59641', '59353', '81321', '59711', '59523', '03215', '97101', 
'45102', '85321', '03280', '57002', '64018', '59036', '75007', '82922', '30012', '59054'] 
22 Warehouses - F1 = 65.614354909843248% F2 = 82.9763157973354% 
['59018', '45102', '97812', '59018', '03046', '97102', '31804', '59016', '59523', '81121', '59831', 
'80422', '97812', '71019', '64018', '59002', '97101', '23014', '82930', '57031', '97710', '59901'] 
23 Warehouses - F1 = 66.43261657775684% F2 =  82.829893274874% 
['80201', '97497', '66007', '85360', '81320', '03431', '59411', '97001', '63826', '03218', '76401', 
'59831', '57002', '59054', '59084', '19701', '59313', '97828', '59353', '30018', '97004', '59018', 
'71301'] 
24 Warehouses - F1 = 69.20287870655377 % F2 = 82.45488634330511 % 
 ['59401', '31701', '97710', '97102', '71065', '58031', '63826', '80436', '27343', '68337', '59261', 
'97004', '43408', '59420', '03280', '83336', '59410', '59002', '87009', '59416', '59801', '59701', 
'59001', '03031'] 
25 Warehouses - F1 =71.79459092353025% F2 = 84.57664773088256% 
['81030', '97812', '40348', '57003', '30230', '97010', '97101', '59054', '59222', '97497', '71019', 
'97014', '59201', '59827', '85001', '59002', '87008', '19701', '83322', '97812', '03046', '59701', 
'64018', '59053', '59420'] 
26 Warehouses - F1 = 65.65817002771358% F2 = 84.65492712231301% 
['59313', '97812', '59222', '80511', '97102', '82922', '03431', '89418', '59222', '66012', '59223', 
'59641', '59016', '57003', '03031', '59831', '03227', '31727', '97497', '19701', '81325', '59701', 
'59447', '59010', '71065', '59313'] 
27 Warehouses - F1 = 78.48637872298474% F2 = 85.10307616222768% 
['59003', '03431', '59201', '81321', '82930', '59523', '03227', '76238', '31316', '03570', '97901', 
'59011', '80020', '59353', '97101', '97801', '85360', '59416', '19701', '71002', '68879', '57002', 
'97710', '40348', '62613', '59062', '59062'] 
28 Warehouses - F1 = 75.60438597452104% F2 = 84.99395363648741% 
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['59032', '35004', '97101', '59711', '59724', '43009', '59447', '76570', '27212', '97102', '03046', 
'85001', '82922', '03218', '87002', '66012', '59313', '59827', '97801', '59353', '03431', '54601', 
'03280', '59214', '80020', '59054', '59016', '59326'] 
29 Warehouses - F1 = 78.46118456364811% F2 = 86.10495131332584% 
['97101', '19701', '80422', '85602', '97828', '03227', '59214', '97107', '59054', '03431', '57012', 
'35901', '59410', '03031', '59711', '97801', '59832', '87011', '59420', '59201', '40355', '65634', 
'59084', '59411', '59313', '71027', '93210', '83401', '97497'] 
30 Warehouses - F1 = 79.47552332650535% F2 = 83.520547498293% 
['14029', '88121', '59435', '97101', '79025', '59401', '59016', '82322', '59641', '59901', '81101', 
'64018', '71004', '59501', '03280', '63101', '35013', '23011', '85611', '59411', '59831', '93623', 
'58009', '03227', '59010', '97014', '59831', '84023', '59084', '97901'] 
31 Warehouses - F1 = 82.79896156247604% F2 = 84.95296619707062% 
['76238', '14041', '87544', '94503', '68019', '59058', '03570', '31805', '19701', '53015', '28018', 
'97004', '03215', '57003', '83201', '97102', '85135', '97901', '59419', '59410', '97102', '59353', 
'59901', '97107', '59010', '97001', '80020', '59827', '42027', '59801', '59801'] 
32 Warehouses - F1 = 86.60875661346683% F2 85.26468915336672% 
['59724', '64018', '15012', '81201', '93601', '71004', '97812', '59214', '59201', '03431', '59326', 
'57003', '85001', '03215', '59701', '68337', '59827', '59032', '81320', '59447', '59419', '42211', 
'59261', '59201', '59003', '53501', '83314', '27013', '59054', '31701', '73052', '03218'] 

 
 
Part III Data 
15 Warehouses - F1 = 43.79292591821757% F2 = 81.94823147955439% 
['59001', '59801', '59054', '59214', '97828', '71002', '19701', '82922', '97497', '57012', '59002', 
'03227', '59724', '97001', '97001'] 
16 Warehouses - F1 = 52.73904327918415%  F2 = 80.74726081979604% 
['97010', '71404', '03570', '59054', '35007', '81321', '57012', '80422', '15012', '59222', '97014', 
'97801', '59214', '59701', '97828', '03280'] 
17 Warehouses - F1 = 53.82020133419505% F2 = 82.23446209825465% 
['82930', '59313', '97102', '97004', '97101', '76230', '35013', '59901', '81121', '59032', '57012', 
'59411', '19701', '03431', '59353', '59002', '59523'] 
18 Warehouses - F1= 48.78903725449387%, F2 = 83.05837042473458% 
['59313', '82922', '19701', '57003', '97004', '81122', '59801', '97014', '97901', '71404', '59223', 
'97004', '03280', '59724', '59901', '97001', '59501', '97014'] 
19 Warehouses -  F1 = 56.45463408222059% F2 = 82.06102694160777% 
['59831', '97828', '87008', '97710', '59827', '82212', '97101', '59010', '14029', '64421', '59084', 
'30014', '03227', '56324', '59801', '97107', '71404', '03215', '59036'] 
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20 Warehouses -  F1 = 64.79280542441205% F2 = 81.90320135610303% 
['66012', '59002', '71019', '81121', '59711', '19701', '97497', '82930', '59201', '03570', '56324', 
'97101', '97107', '97801', '80436', '59353', '97828', '40348', '12018', '59701'] 
21 Warehouses - F1 = 62.64801568610269% F2 = 82.8048610643828% 
['71027', '59711', '59001', '97101', '59827', '81325', '82922', '03280', '68943', '97812', '59724', 
'30122', '17005', '57017', '85324', '97014', '97701', '97801', '59401', '97901', '59831'] 
22 Warehouses - F1 = 67.03618100360386%  F2 = 82.36359070544641% 
['82930', '56510', '14009', '35013', '59901', '97497', '77801', '59831', '81611', '97828', '03046', 
'59018', '27343', '68879', '59032', '59011', '81433', '85360', '97710', '59001', '03280', '59313'] 
23 Warehouses -F1 = 66.37017887853129% F2 = 84.48167515441543% 
['59801', '59036', '03031', '59416', '59711', '03431', '64018', '80020', '59016', '14414', '84624', 
'35004', '19701', '59002', '59016', '87008', '57003', '73301', '59214', '59711', '97101', '97828', 
'59058'] 
24 Warehouses - F1 = 65.97145392207336%  F2 = 83.39286348051834% 
['03570', '97004', '59011', '59501', '65018', '59435', '82930', '57003', '71006', '59016', '59001', 
'89406', '59214', '59058', '59062', '03280', '59054', '97701', '30012', '81325', '59832', '16028', 
'81123', '59353'] 
25 Warehouses - F1 = 69.49206383980896% F2 = 83.89301595995223% 
['68019', '59326', '85001', '59701', '40046', '17003', '59353', '97901', '81320', '59827', '31620', 
'73530', '59523', '59401', '03227', '71004', '97107', '57002', '03218', '97004', '59827', '80511', 
'59010', '59084', '59001'] 
26 Warehouses - F1 = 79.61354350374078% F2 = 84.39761664516595% 
['40348', '59058', '59326', '83311', '03218', '59032', '59054', '59010', '59501', '87009', '80010', 
'97107', '31701', '97101', '59411', '59326', '14029', '59313', '85324', '71404', '59801', '93623', 
'68937', '59501', '57017', '12501'] 
27 Warehouses - F1: 78.03288385492546% F2: 83.91007281558323% 
['03227', '10451', '57012', '59054', '89701', '97101', '03227', '59831', '97801', '97107', '53005', 
'03215', '76539', '16001', '67005', '59801', '87002', '81235', '97102', '85931', '83322', '35013', 
'97010', '59003', '97701', '59420', '97102'] 
28 Warehouses - F1 = 78.26182208541915%  F2 = 83.38866980706906% 
['87011', '42022', '75135', '59701', '59724', '97812', '59401', '64446', '16028', '97004', '19701', 
'59001', '59054', '59036', '03570', '30439', '82922', '59003', '80436', '89701', '97001', '56520', 
'28612', '03218', '85920', '59084', '59420', '97710'] 
29 Warehouses - F1 = 79.89067925644368%  F2 = 84.64853188307645% 
['63828', '59261', '03031', '59401', '73301', '59010', '97014', '54106', '97014', '59058', '81433', 
'97710', '83217', '80422', '59058', '66407', '85001', '13737', '35007', '15012', '97801', '59010', 
'73547', '97497', '28006', '57213', '59002', '19701', '59002'] 
30 Warehouses - F1 = 75.33710880590638% F2 = 85.32594386814325% 
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['59641', '12108', '59435', '15006', '97901', '59003', '71019', '59222', '83203', '59711', '51501', 
'31622', '59001', '97701', '56623', '59003', '87001', '59058', '63101', '19701', '59901', '59001', 
'59062', '80010', '85324', '59011', '59010', '59214', '27343', '59801'] 
31 Warehouses - F1 = 78.18843040387333% F2 = 85.76968824612963% 
['81122', '19701', '82212', '55111', '97107', '03570', '19701', '59214', '35007', '75135', '59401', 
'59901', '59641', '03280', '68924', '59701', '85325', '63821', '28702', '59724', '57017', '44805', 
'97004', '82930', '97107', '59222', '59419', '03570', '97701', '59058', '59831'] 
32 Warehouses - F1 = 83.89326439627126% F2 = 84.62019109906781% 
['59223', '82922', '89701', '57002', '59313', '81321', '97010', '03570', '59001', '59831', '56208', 
'97010', '23004', '31772', '97101', '63828', '43512', '14009', '80020', '85135', '73052', '03046', 
'59223', '59058', '97710', '59214', '59641', '59435', '97828', '69135', '76634', '59701'] 
 
Average Tax Rates 
1 represents data from the first genetic algorithm (prioritizing spatial fitness) 
2 represents data from the second genetic algorithm (prioritizing less tax liability for customers) 
‘W’ stands for ‘Warehouses’ 
 
15W 

1) 4.9406666666666675% 
2) 0.09353333333333333% 

16W 
1) 4.7025000000000004% 
2) 0.08625% 

17W 
1) 5.010588235294118% 
2) 1.047058823594119% 

18W 
1) 5.118333333333334% 
2) 1.4111111111111111% 

19W 
1) 4.917368421052633% 
2) 1.0663157894736841% 

20W 
1) 4.531500000000001% 
2) 1.6005000000000002% 

21W 
1) 5.319523809523811% 
2) 1.7490476190476188% 

22W 
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1) 5.1127272727272736% 
2) 1.6854545454545452% 

23W 
1) 5.070869565217392% 
2) 1.7556521739130432% 

24W 
1) 5.176250000000001% 
2) 1.9691666666666666% 

25W 
1) 5.3436000000000004% 
2) 1.6744000000000002% 

26W 
1) 5.431923076923077% 
2) 1.3519230769230771% 

27W 
1) 5.091851851851852% 
2) 1.9037037037037036% 

28W 
1) 5.139642857142857% 
2) 1.7814285714285717% 

29W 
1) 5.387586206896552% 
2) 1.7020689655172415% 

30W 
1) 5.095333333333333% 
2) 2.269666666666664% 

31W 
1) 5.091612903225807% 
2) 2.149355838709677% 

29W 
1) 5.12% 
2) 0.227755000000004% 

 
 

 
 


