
For office use only

T1________________

T2________________

T3________________

T4________________

For office use only

F1________________

F2________________

F3________________

F4________________

2016
19th Annual High School Mathematical Contest in Modeling (HiMCM) Summary Sheet

(Please make this the first page of your electronic Solution Paper.)

Team Control Number:6829

Problem Chosen:B

As online shopping become more and more popular in contemporary society, the increase

demand for larger quantity of production as well as faster delivery time lead the recreation

equipment company to build more warehouses in the U.S. Its goal is to make those new

warehouses cover all the area within one-day ground shipping.

The two of the biggest problems of this question lie in the data extraction from the URLs

and data analysis, especially when there are a lot of mismatched zip-codes existing on this

website. It is not difficult to find that this is a typical set covering problem. So a more

efficient algorithm is needed when doing analysis: approximation algorithm.

The essence of this model is derived from "greedy algorithm": instead of considering

from the overall perspective, the approximation algorithm only looks for the current

maximum cover-area increment (warehouse's location that can radiate the largest area). We

are clearly aware that it is impossible to come up with all the answers with high precision

due to the large amount of data needed to address. So sacrificing a little bit of precision of

the results (as well as the number of results) to save a huge amount of computational time is

worthwhile and extremely beneficial. We admit that the error is bigger than the brute force

search, but the time we saved is definitely worth the precision.

One significant advantage of this model is the high efficiency. Although approximation

algorithm could not compute the optimal result, its algorithm complexity can decrease from

𝑂(𝑛! ⋅ 𝑛) to 𝑂(𝑛2 ⋅ log2 𝑛), as the time in other algorithms take up unimaginable amounts of

time.

Furthermore, we optimized the approximation algorithm while solving part Ⅱ since tax

rate had been taken into consideration. The same thinking pattern was employed in part Ⅲ.

Then we tested our model by calculating the land cover rate, as shown in table 3.

Lastly, the model analysis shows that our model has its stability when the tax rate of

garment varies.

The paper will illustrate the ideas and results abovementioned specifically.

Team #6829 Problem B: Shop and Ship Page 2 of 53

A Letter to Company’s President

Dear President,

I am one of your company staffs. For several years, our company had always been
the leading enterprise in recreation equipment businesses. As electronic marketing gradually
becomes the dominating character, the demand from customers for a faster delivery speed
and a lower, reasonable price becomes higher than it had never reached. Company executives
had decided to enlarge our business by establishing more warehouses in different locations
in the U.S., with the hope of minimizing both goods’ delivery time from the customers’
perspective and reducing tax cost. It is also acknowledged that adding clothes and apparel
as new product lines are aside from that equally important. After deliberate analysis, we
wrote this letter to produce you our perspective of view by giving you our model and results,
sincerely hoping that our work could help solve your problem.

The results are, if we do not consider tax and new clothes business, result for 100%
land cover rate needs 23 warehouses as shown in table 1. But for recommendation, 96.14%
land cover rate is better and only need 19 warehouses. The locations can be seen in figure
4.3.1 and table 2.

Based on the given state sales tax rates, we optimized our approximation algorithm
by considering the tax rate prior to incrementing the maximum coverage. (See table 4 for
details) The adjusted number of warehouses are 22, covering 95.26% of land area. Total
weight of taxes is 3.36157 × 106 dollars. Also, we list the land cover rate and correspoding
tax and warehouses’ number in table 3.

As for the result after the introduction of clothes and apparel businesses, we find that
the result would not change unless the land cover rate varys from 90.7%-91.3%. Therefore,
we decide that the adjusted number and location of warehosues are the same in part I (shown
in figure 3).

We have faith in our model after deliberate testing. We sincerely hope that these
results can contribute to your work, and make our company gain the upper ground in the
competition in the digital age.

Sincerely,

Team #6829

Team #6829 Problem B: Shop and Ship Page 3 of 53

Contents

1 Introduction and Problem Interpretation 4

2 Simplifying Assumptions 4
2.1 Assumptions and Justifications . 4
2.2 Definitions . 6
2.3 Variables and Mathematic Symbols . 6

3 Model Description 8
3.1 Data Extraction . 9

3.1.1 Web Crawler Implementation . 9
3.1.2 Pixel-Point Extraction . 10

3.2 Data Analysis: A 0-1 Programming Model 12

4 Algorithms 13
4.1 An NP-Hard 0-1 Matrix: Failed . 13
4.2 Optimized Brute Force Search(IDA*): Failed 14
4.3 Approximation Algorithm: Succeeded . 14

4.3.1 Part I . 16
4.3.2 Part II: Effect brought by the Tax Rate 19
4.3.3 Part III: Effect brought by the Emergent Clothes Business 24

5 Model Analysis 27
5.1 Algorithm Complexity . 28

6 Model Testing and Conclusion 28
6.1 Land Cover Rate . 28
6.2 Model advantages . 28
6.3 Model disadvantages . 29

7 Appendixes 30
7.1 Web Crawler . 30
7.2 Data Processor . 37

Team #6829 Problem B: Shop and Ship Page 4 of 53

1 Introduction and Problem Interpretation

As online shopping become more and more prevalent and important in people’s everyday
life, the seek for balance between the traditional brick and mortar stores and online stores
are especially important for companies. Compared with shopping in person, online shopping
is restricted to the geological locations not only for by the rare opportunity to actually
experience the products, but also by the long time required to wait in order to receive the
items from the limited number of warehouse(s).

Therefore, viewing from a long-term developing perspective, the solution that we are
seeking is to look for appropriate sites for those warehouses in order to deliver goods within
one-day ground shipping, so that companies can easily expand their business with agility.

In this question, we are ordered to solve this location choosing problem. After doing
several transformations to this practical problem, we attributed it as a set cover problem.

• Shipping time and land-cover efficiency should be considered as important factors. We
need to implement the utmost utilization of the resources given by the ”Ground Transit
Times Shipping From One Place to Another” maps.

• Meanwhile, as taxes are taken into consideration, our model optimization should esti-
mate and compute each state’s tax rate after selecting the minimum warehouse numbers
and their corresponding locations.

• Following the same algorithmetic pattern, in order to add clothing and apparel to our
line of product, we should analyze the effect of the respective taxes in the same way.

In the end, we finished our paper by writing a letter to our company’s president includ-
ing our results and conclusion, while also advising him or her on the choice of the warehouses’
locations, how our model is best fitted in minimizing the tax liability and therefore benefits
the whole business and the customers.

2 Simplifying Assumptions

2.1 Assumptions and Justifications

1. Exceptions

Assumption: Inevitable factors and accidents do not exist in this model, which
means delivery time can be accurately predicted by the ”Ground Shipping” maps
provided by UPS.

Justification: First, inevitable factors such as rain, hurricane, earthquake and other
forms of non-human activities, and events in emergence cannot be predicted. Secondly,

Team #6829 Problem B: Shop and Ship Page 5 of 53

these small-probability events can be ignored with minor importance compared to the
large scale scheme.

2. City Difference

Assumption: Each city is considered the same without functional difference.

Justification: We are given no information about cities’ functional difference that
will influence goods’ delivering when choosing warehouses. There is no efficient and
rapid way, beyond our reach, to analyze the effect of the difference. Therefore we treat
every point of the U.S. land as equal.

3. Time Difference

Assumption: Everyday in a year is considered the same.

Justification: It would be a very complicated model if we take into consideration
the daily differences. Also, it is not practically necessary to build our model precisely
to whichever day in any year. For instance, business busy times such as Christmas,
Thanksgiving can be overlooked and considered as ordinary days.

4. ZIP Codes Retrieval

Assumption: On the UPS site, if different ZIP codes represent a same map URL
(maps), we assume that these ZIP codes of the cities are the same.

Justification: Due to the low precision data given by UPS, we are unable to distin-
guish between those cities linking to the same pictures. Under this condition we assume
and believe that those cities are geographically close to each other and delivery-wise
functionally similar to each other which lead to the same results.

5. Customer Coverage

Assumption: Goods’ final destinations can be everywhere in the U.S. land, except
the given states as exceptions. We only analyze the land that we covered.

Justification: The shipping time given by UPS describes the time directly from the
source to the destination. Therefore the exact geographic points are analyzed. Doing
this could also improve the model precision by taking more sample points. Therefore
assuming city to be the smallest unit is logical and feasible.

6. Purchasing Abilities

Assumption: The purchasing ability of the state is proportional to its Gross State
Product.

Justification: It would be meaningless to not retrieve data in this way. Since we
are unable to get any actual data about our company, we would not estimate sales
through actual data. Therefore we can only assume that the state’s purchasing ability
is proportional to its Gross State Product, which it produces.

Team #6829 Problem B: Shop and Ship Page 6 of 53

2.2 Definitions

1. Sample Point

A Sample Point is a random point taken from the U.S. map, not regarding its actual
meaning, such that it may not be an actual city, town or village, but shall be related
to an actual geographic location. A sample point is represented on the map as a single
pixel, in the following figure 3.1.2

The sample point method is crucial in defining how the U.S. land is covered by this
one-day ground shipping implementation, and therefore is an important definition is
this thesis.

2. Land Cover Rate

Land Cover Rate analyzes how the land of U.S. are covered when delivering goods from
warehouses that we choose. It is noteworthy that due to the given pictures’ unknown
error, the overlapped radiated area can only cover 95.80% land (total rate). Therefore,
the land cover rate that we defined is actually the relative rate: the actual rate divided
by the total rate.

The higher the land cover rate, the better and faster the packages are delivered to the
customers. Please note that we do not take into account the population coverage in
this particular term.

Since this could evaluate the efficiency of the warehouse arrangement, this definition
is critical in testing our model’s efficiency, accuracy and feasible degree.

3. Taxity

Taxity is the annual amount multiplied by the tax rate, in terms of individual states.

Taxity estimates the purchasing power of each state. Except the tax rate, all other given
information are retrieved from the U.S. Census and the Bureau of Labour Statistics
(BLS) of America.

It is widely acknowledged and is logical to assume that the state’s GSP (Gross State
Product) is proportionate to its purchasing ability, therefore tax rate multiplies GSP
is feasible.

2.3 Variables and Mathematic Symbols

• Sample (Citites/States) Count: n

Our samples are the cities’ of America, serving as potential which are 691 in total as
given by the UPS server URLs, which includes invalid cities. After excluding those
invalid cities we reached an agreement that there are 245 cities that satisfies our re-
quirement. See 3.1.1 for more details.

Team #6829 Problem B: Shop and Ship Page 7 of 53

• Sample Points Count: m

By default, m = 3000. These sample points are the exact sample points as defined in
1. See 3.1.2 for more details.

• Warehouses’ Number: r

The number of all warehouses chosen as the result of the evaluation.

• Warehouses’ Zip-codes: Zip code

The locations of warehouses that we are going to choose are reflected by the Zip-
codes of the cities at which located. We can find each city’s zip-code from the given
URL (including invalid zip-codes). By choosing cities Zip-codes rather than using
coordinates, we can lower the algorithm complexity efficiently.

• Cities/States Information: Q

We use a 0-1 programming model (or a 0-1 Matrix, see 4.1) to store those information.
Details of its principals would be illustrated later.

• Sample Points: S

This defines the set of all sample points, whereas Sj s.t. j ∈ [1, n] is the sample points
reachable by any individual warehouse #j.

• Chosen Warehouses: J

The set of the numbers of the warehouses chosen individually. We also assert that
|J | = r. The final results should include the number of the warehouses, and also this
is an important variable in our model.

• A parameter in part II: γ

This parameter is used in part II, and we determine γ = 0.5. The reason for 0.5 is
illustrated in 4.3.2.

• The weight for purchases on garment: ηgar

According to the Bureau of Labor Statistics of U.S., the approximate allocation of
the clothes and apparel in the overall consumption is about 3.3%. Therefore, we can
assume that our company’s clothing sales amount in each family is proportionate to
that of the domestic, and use it to compute how its varation will affect the result.

• Tax Rate (function): T

1. T is the tax rate of ordinary products.

2. Tgar is the tax rate of garments.

3. T2 is the equivalent tax rate for problems in Part 3 (See 4.3.3), where:

T2 = T · (1− ηgar) + Tgar · ηgar

Team #6829 Problem B: Shop and Ship Page 8 of 53

Note that the data of T and Tgar can be retrieved from the internet.

• Affectiveness Weight: ψ

ψj s.t. j ∈ [1, n] infers the affective weight of the warehouse #j, which defines how
important a warehouse is. Normally in the following models it equals to the tax weight
of the state which the warehouse is located in.

3 Model Description

This question is in fact a combination of a number of small problems, which can be solved
one by one easier than solving as a whole. Aspects of mathematics and computer science
involved in the question includes data retrieval, web crawlers, image processing, algorithms
and data structures.

We shall retrieve the data from the references we had stated and the internet as is, and
process the data into formats that we and our programs could understand. These formats
are used to create results by the data processing programs, whose duties are resolving the
results.

All data extraction utilities are used and functional, however only one of the three
algorithms is correct and fully functional, id est the third one.

The model description in detail can be divided into two important sections, shown as
the figure 3 below.

sks
打字机文本

sks
打字机文本

sks
打字机文本

sks
打字机文本

sks
打字机文本

sks
打字机文本

sks
打字机文本

sks
铅笔

sks
打字机文本
1

sks
打字机文本

Team #6829 Problem B: Shop and Ship Page 9 of 53

Figure 1: Flow Chart

3.1 Data Extraction

This section analyzes how we extract the data needed (the first step in the
figure 3) on the Internet, in details and descriptions.

3.1.1 Web Crawler Implementation

Explicit data are not provided in the problem as input data, consequently we have to visit
the website for details. The UPS official website [5] is not well formed, due to the obsolete
website design. However, using Fiddler Web Debugger we are able to retrieve the image data

sks
铅笔

sks
打字机文本
1

sks
打字机文本

sks
打字机文本

sks
打字机文本

sks
打字机文本

Team #6829 Problem B: Shop and Ship Page 10 of 53

through the ZIP code.

The ZIP code is passed in with an HTTP request of the type x-www-form-encoded.
The parameter named zip defines the ZIP code, in a string format. After passng in this
data we shall use regular expressions to retrieve the image from the server and save it to a
file. The code of implementation could be found in the appendix.

There are also a few packages in Python providing faster and easier implementations
of HTTP requests manipulation support. Such packages include urllib and requests [6].
The pseudo code of this procedure is written as follows:

Algorithm 1 Web Crawler Algorithm

procedure DownloadImageByZip(zip)
url← ”https://www.ups.com/maps/results”
packet← EmbedInformationOfZipCode(zip)
request← Requests.Post(url, packet)
httpdata← request.data
if formatpattern not in httpdata then

return false
end if
imagepath← Regex.Match(formatpattern, imagepath)
imagedata← Requests.Get(imagepath)
return imagedata

end procedure

3.1.2 Pixel-Point Extraction

We regard a set of sample points of a size 3000 (See 3.1.2), which serves as the sample
of cities or towns. These towns, will cooperate with us in the procedure of evaluating the
importance and coverage of individual warehose location selection candidates.

Team #6829 Problem B: Shop and Ship Page 11 of 53

Figure 2: 3000 Sample Points

Using the builtin Python Imaging Library [7], we could extract the points of ran-
domly chosen pixel locations. Due to the immense amount of selected sample points, we
could gurantee that the map is or is near to evenly covered by the sample points, which,
in return, guranteed our correctness in approximation of evaluating the locations of the
warehouses.

The getpixel() function in Python Imaging Library retrieves the colour of pixels,
which we use to test whether the chosen points are actually inside the states themselves.
These points’ coordinates are to be outputted to a given file handle, which is to be directed
to a Python script, that determines the one-day ground shipping time between arbitrary
warehouses and sample points.

Team #6829 Problem B: Shop and Ship Page 12 of 53

Figure 3: Overall Potential Land Coverage: 95.80%

These data, namely the shipping time, will be transferred to the C++ code that pro-
cesses the decisive operations.

We have clearly demonstrated the sample points’ randomizer in pseudo code, as stated
follows:

Algorithm 2 Pixel Point Extraction Algorithm

procedure ExtractPixelPoints(image, n)
acceptedcolours← potential colours in all states
markercolour← rgb(0, 255, 255)
markers← ∅
for i ∈ [0, n) do

point← (0, 0)
while image[point.x][point.y] not in acceptedcolours do

point← Random((x, y)s.t.x ∈ [0, width), y ∈ [0, height))
end while
SetPixelData(image, point,markercolour)
Append(markers, point)

end for
return markers, image

end procedure

3.2 Data Analysis: A 0-1 Programming Model

Following is the illustration of this 0-1 programming model in details.

Firstly, let us suppose that S = {e1, e2, ..., em} is a universe set which is the set of
sample points such that |S| = m (see3.1.2) in problem B. S1,S2,...,Sn are subsets of S. If

Team #6829 Problem B: Shop and Ship Page 13 of 53

J ⊆ {1, 2, ..., n}, and
∪
j∈J Sj = S, we call {Sj}j∈J is a set covering of S. The question

is to find a set covering which has the minimum number of elements, which represents the
minimum counts of warehouses in U.S. when applying in our question.

In fact, {Sj}j∈J is a set covering of S means that every element in S is included in at
least one set Sj(j ∈ J).

For each subset Sj(j = 1, 2, ...,m), we introduces a decision variable:

xj =

{
1, if j ∈ J ;
0, else

Therefore we can build a 0-1 programming model A for this set covering problem:

min
m∑
j=1

xj

s.t.
∑
j:ei∈Sj

xj ≥ 1, i = 1, 2, ..., n

xj = 0, 1, j = 1, 2, ...,m

The constraint ”
∑

j:ei∈Sj
xj ≥ 1, i = 1, 2, ..., n” can guarantee that each element ei in

S will at least be covered by one of the subset of Sj(j ∈ J).

4 Algorithms

4.1 An NP-Hard 0-1 Matrix: Failed

To commence, we simplified the question by enlarging the scope of analysis from cities to
states and assuming that the possible warehouses are located at their capital of state.

In this way, we can extract 48 points from the maps. Then we use these 48 points to
build a 0-1 matrix of which ”1” represents that online orders can arrive in one-day ground
shipping, while ”0” vice versa.

By analyzing through pixel-point extraction (see 3.1.2) those maps downloaded from
URL employing web crawler implementation (see 3.1.1), we can obtain all the data and
create this 0-1 matrix.

We now define each line in the 0-1 matrix as Si, i ∈ {1, 2, ..., 48}, Si = {xia, a ∈
N∗ ∩ [1, 48]}. Therefore the question is reduced to a form of:

find J ⊂ {1, 2, 3, ..., n} s.t. ∀j ∈ J,
∪

i∈N∗,1≤i≤n

{xij} = {1}

Team #6829 Problem B: Shop and Ship Page 14 of 53

4.2 Optimized Brute Force Search(IDA*): Failed

Due to the high proposed complexity of the first algorithm, we decided to reduce the constant,
i.e. the running time by a large factor. If the factor is large enough, it could potentially
reduce the new algorithm to a near-polynomial time. These optimizations can be described
as follows:

When not using the sample points’ algorithm, which can be understood as regarding
the individual states as the only sample points, which held a stable time complexity of
O(n! ·m) in the first algorithm. In this algorithm, we deduce all states which can only be
covered by one warehouse, and the respective warehouses also, before we begin the brute-
force deep first search procedure. Upon this about one third of the points can be removed,
which contributes greatly to the reduction of overall time.

Using branch cutting in the brute force search algorithm, after we found a solution,
any solution with a depth larger than the solution with the minimum steps would be removed.
This suggests that we may cut out a lot of other useless solutions during the search.

However, as we were about to implement this algorithm, we decided that it would
not be appropriate to select only a few dozens of sample points, as this would deal a great
amount of precision loss. Therefore this algorithmic optimization which mainly focused on
constant factor reduction was actively dropped out of the discussion and would not evolve
into actual code implementations.

4.3 Approximation Algorithm: Succeeded

Based on and inherited from the two aforementioned algorithms, we identified each of the
disadvantages listed below:

The inefficient computational complexity: since we do not need to give all the possible
locations of the warehouses, the algorithms designed through these direct and brute-force-
based ideas are unnecessary. Therefore, improvements that should avoid non-polynomial
complexity are preferred and required.

We discovered the reason why a perfect solution without a non-polynomial solution
cannot be avoided is that the problem itself is in fact a set-cover problem. We can treat
all cities in the United States as a set, and each warehouse covers a subset of cities, which
should be time-wise, cost no longer than one day through means of ground shipping. These
subsets are to be chosen, which should sum up to the entire set, i.e. the union of all sets
should be or nearly approaching the set of all cities of the United States.

To reduce the general burden of this procedure and algorithm, we chose a set of 3000
points, randomly from the given ground shipping coverage maps, instead of all the cities of
the Unitied States, which can be a large pack of data to be processed by general personal
computers.

Team #6829 Problem B: Shop and Ship Page 15 of 53

After all aforementioned assumptions we had given, we may come to a conclusion
that a set cover problem can only be solved without guranteed solution perfectness, if a
polynomial time complexity is required. We therefore discovered and developed a greedy
algorithm, which is based on the general principles of Chvatal’s algorithms. This algorithm
can gurantee us a large amount of data with a high probability of closeness.

We used part of the approximation algorithm and derived from some of its core
subroutines this partially new algorithm, which summarized and described as below: [2]

Instead of taking the whole situation into account, we decide the warehouses’ locations
one by one (as mentioned in the summary sheet): After finishing a single choice, we continue
to search for the current optimal choice, not taking into account how this choice affects latter
choices. This process would not require a time complexity higher than O(m). Thereafter
this choice is included in the final result, while these steps are repeated until the final result
meet the termination requirement by the defined configuration.

In the following algorithm that approximates the solution, these variables are defined
as follows:

S̃jis the set of the newly added sample points after selectingSj.

F is the set of sample points that are already chosen.

J is the set of the numbers of chosen warehouses.

Algorithm 3 Approximation Algorithm

procedure FindOptimalSolution(m,α, ψ, S, S1, S2, ..., Sn)
F ← ∅
J ← ∅
while |F | < α ·m do

For every j, S̃j ← Sj \ F
j∗ ← j ∈ [1, |S|] ∩N+ s.t. max{ S̃j

ψγ
j
}

J ← J ∩ {j∗}
F ← F ∩ {Sj∗}

end while
return J

end procedure

It is noteworthy that the result of approximation algorithm is not technically the
global optimal solution but the local optimal solution. But in some situation, the global
optimization is not needed, or its mathematic meaning is not the result we are looking

Team #6829 Problem B: Shop and Ship Page 16 of 53

forward to. Therefore, the essence of approximation algorithm accurately solve our problem
for it neither looks for the best allocation of the selected warehouses (which presumably have
the same land cover rate), nor we need to provide with all the possible solutions.

By acting on the local optimization, we can significantly decrease the algorithm com-
plexity which can be seen in table 5.

4.3.1 Part I

When land cover rate decreases, the requirement for warehouses decreases as well. In the
approximation algorithm stated in 4.3, because that taxes are not taken into consideration
in this part of the problem, we define the tax weight as:

ψj = 1, j ∈ {1, 2, 3, ..., n}

The following is the result when warehouses can radiate all area (relatively: see denifi-
tion in 2):

Team #6829 Problem B: Shop and Ship Page 17 of 53

Zip code State City
1841 MA Lawrence
18041 PA East Greenville
26241 WV Elkins
29601 SC Greenville
39841 GA Damascus
46241 IN Indianapolis
47721 IN Evansville
49441 MI Muskegon
57001 SD Alcester
58041 ND Hankinson
59001 MT Absarokee
59841 MT Pinesdale
64121 MO Kansas City
69001 NE McCook
71161 LA Shreveport
76021 TX Bedford
78841 TX DelRio
82001 WY Cheyenne
83321 ID Castleford
85001 AZ Phoenix
87001 NM Algodones
93721 CA Fresno
97281 OR Portland

Table 1: Part I warehouses location: 23 in total, cover 100.00% of land area

But in real life situation, if we slightly cut down the land cover rate, the number
of warehouses needed will decrease significantly. For instance, as table 2 and figure 4.3.1
had shown, if we decrease 3.86% on the demand for land cover rate, we can obtain a 17.4%
decrease on the demand for warehouses.

Team #6829 Problem B: Shop and Ship Page 18 of 53

Zip code State City
1841 MA Lawrence
18041 PA East Greenville
29601 SC Greenville
39841 GA Damascus
46241 IN Indianapolis
49441 MI Muskegon
58041 ND Hankinson
59001 MT Absarokee
59841 MT Pinesdale
64121 MO Kansas City
71161 LA Shreveport
76021 TX Bedford
78841 TX DelRio
82001 WY Cheyenne
83321 ID Castleford
85001 AZ Phoenix
87001 NM Algodones
93721 CA Fresno
97281 OR Portland

Table 2: Recommendation for part I warehouses location: 19 in total, cover 96.14% of land
area

Figure 4: Radiated Area for warehouses in part I

CONCLUSION: Result for 100% land cover rate needs 23 warehouses as shown
in table 1. But for recommendation, 96.14% land cover rate is better and only need 19
warehouses. The locations can be seen in figure 4.3.1 and table 2.

Team #6829 Problem B: Shop and Ship Page 19 of 53

4.3.2 Part II: Effect brought by the Tax Rate

In this part, we are required to give the minimum customers’ tax liability rather than the
minimum warehouses’ quantity. Therefore, we make slight change of the 0-1 programming
model, named as model II.

To commence, we changed the definition of the decision variable in part I to the city
No.j state tax rate: Tj. Then the decision changes into:

min
∑
j∈J

Tj

Then, we assume that the total land cover area is α time(s) the total land area, and
then we list different tax weight according to different α. Game can be applied in terms of
reality to reach equlibrium. The constraint condition changes into:

s.t.
∑
j:ei∈Sj

xj ≥ 1, i ∈ I, |I|
n
≥ α

j = 1, 2, ...,m

As for how to realize the model II, we have two means:

1. Change the constraint condition

It is not difficult to conclude that except for the none-tax state, all the other states’
tax rates fluctuate between 4%−6%. The slight difference also appears in states’ GSP
(Gross State Product) [3]. Therefore, we deem the state’s tax [4] rate is proportionate
to the number of warehouses in each state. In precondition of a less number of ware-
houses, it is appropriate to select the state with the minimum tax rate. The rule for
the selection of j∗ is as follow:

If
|
∪
j∈J

Sj| ≥ α|S|

So we suppose:

Tj∗ = min{Tj||S̃j| ≥ δ × max
1≤j≤m

|{S̃j}|}

J := J ∪ {j∗}, S̃j := S̃j\S̃j∗ , (j = 1, 2, ...,m)

Team #6829 Problem B: Shop and Ship Page 20 of 53

The merit of changing the constrait condition is that we can find the optimal δ by
multiple computations, which efficiently avoids the none-tax rate problem (compare
with the sencond means).

The disadvantages lie in the overlook of the difference of each state’s GSP and tax rate
and this means’ result is unsatisfied.

2. Change the decision variable

We need to consider how to minimize the customers’ tax liability when the total land
cover rate is a constant, which means to minimize:

Total Taxγ

Total Land Cover Rate

Therefore, we define Qj as the value of the city No.j:

Qj =
|Sj|
Tj

γ , γ = a self defined constant ≥ 0

The decision changes into:

max
∑
j∈J

Qj

The merits of changing the decision variable is that we can find the optimal γ through
experiments with computer. Also, since we do not change the constraint condition, it
is convenient to revise the code based on part I.

The disadvantage is that the Qj do not have meaning if city No.j is in none-tax rate
state, since Tj

γ is an denominator. To solve this problem, we laborly define tax rate
in the none-tax rate state as 0.0000000000001.

When γ = 0, which means we do not consider the effect caused by the tax rate
brought, all the data we get is the same in part I.

Therefore, in this model, considering not the affectiveness of garment taxes, we define
the affectiveness weight as follows:

ψj = tax weight = T (j) ·GSP [j]

Whereas GSP is the Gross State Product of the state where the warehouse is located
in.

Following is a part of the results, showing how this allocation effect the customers’
tax liability. By analyzing this data, we can choose the best data for images and final results.

Team #6829 Problem B: Shop and Ship Page 21 of 53

Land Cover Rate(%) Total Count of Warehouses Total Tax(million dollars)
91 17 3.39057
91.2 17 3.39057
91.4 17 3.39057
91.6 17 3.39057
91.8 17 3.39057
92 17 3.39057
92.2 17 3.39057
92.4 17 3.39057
92.6 18 3.67197
92.8 18 3.67197
93 18 3.67197
93.2 18 3.67197
93.4 18 3.67197
93.6 18 3.67197
93.8 18 3.67197
94 18 3.67197
94.2 18 3.67197
94.4 18 3.67197
94.6 18 3.67197
94.8 19 3.67197
95 19 3.67197
95.2 19 3.67197
95.4 19 3.67197
95.6 19 3.67197
95.8 19 3.67197
96 19 3.67197
96.2 20 3.89494
96.4 20 3.89494
96.6 20 3.89494
96.8 20 3.89494
97 20 3.89494

Table 3: part II land cover rate and correspoding tax and warehouses’ number

In this model, in order to determine a appropriate γ, we select threee representives:
0.5, 1, 2 to make imgaes and then compare.

Team #6829 Problem B: Shop and Ship Page 22 of 53

Figure 5: Relations between γ, Land Cover Rate and the result

Figure 6: Relations between γ, Land Cover Rate and total tax weight

It is not difficult to find that once we take tax rate into consideration, the total tax
decrease. Also, γ = 2 is worse than γ = 1 and γ = 0.5 and the difference between γ = 1
and γ = 0.5 is too small. The γ = 0.5 advantages over the other two data; therefore, we set
γ = 0.5 in our model. The result is as following:

Team #6829 Problem B: Shop and Ship Page 23 of 53

Zip code State City
1841 MA Lawrence
19961 DE LittleCreek
27201 NC Alamance
35201 AL Birmingham
45041 OH Miamitown
54201 WI Algoma
57001 SD Alcester
57481 SD Westport
59001 MT Absarokee
59841 MT Pinesdale
64121 MO KansasCity
71161 LA Shreveport
76021 TX Bedford
78841 TX DelRio
80121 CO Littleton
83321 ID Castleford
85001 AZ Phoenix
87001 NM Algodones
93721 CA Fresno
97281 OR Portland
97401 OR Eugene
97801 OR Pendleton

Table 4: part II warehouses location: 22 in total, cover 95.26% of land area, total weight of
taxes: 3.36157× 106 million dollars

Figure 7: Radiated Area for warehouses in part II

CONCLUSION: The adjusted number of warehouses are 22, covering 95.26% of

Team #6829 Problem B: Shop and Ship Page 24 of 53

land area (See table 4). Total weight of taxes is 3.36157× 106 dollars. Also, we list the land
cover rate and correspoding tax and warehouses’ number in table 3 for sensitive testing.

4.3.3 Part III: Effect brought by the Emergent Clothes Business

As mentioned in 2.3, we defined the T2 function (to substitute the tax rate function in part
II) as following as:

T2 = T × (1− ηgar) + Tgar × ηgar

The affectiveness weight in Part ii can be minorly modified to satisfy the needs of this
solution as:

ψj = T2(j)×GSP [j]

According to the Bureau of Labor Statistics of U.S.(see 2.3), η = 3.3%:

Figure 8: Relations between warehouses Land Cover Rate with/without η

Team #6829 Problem B: Shop and Ship Page 25 of 53

Figure 9: Optimized relations between warehouses Land Cover Rate with/without η

In this picture, we can see the difference about the existence of ηgar. In this way, both
weight of taxes and number of warehouses will decrease in a small degree.

Next, we make the constant ηgar a variable with a scope from 2.1 through 4.4 to test
the sensitiveness of ηgar.

Figure 10: Tax-ηgar function A1 in part III

Team #6829 Problem B: Shop and Ship Page 26 of 53

Figure 11: Warehouses numeber-ηgar function A2 in part III

From the picture above, we can conclude that ηgar is not a sensitive factor to the
model. (Obviusly, the change of ηgar will lead to the varying of tax rate in the same city.)
Therefore, our model and method analyzed that it is stable. We altered ηgar from 1 through
9.8, which we believed was the appropriate and sufficient range for sensitivity testing.

Figure 12: Warehouses number-ηgar function B1 in part III

Team #6829 Problem B: Shop and Ship Page 27 of 53

Figure 13: Warehouses number-ηgar function B2 in part III

Result shows that, changes only occur while ηgar ranges from 1.0 to 1.2 affects the
overall warehouse selection, which is relatively small to the actual data. When ηgar is large
enough, proposedly larger than 3.3, no obvious changes are dealt to the evaluation result.

CONCLUSION: After the introduction of clothes and apparel businesses, we find
that the result would not change unless the land cover rate varys from 90.7%-91.3%. There-
fore, we decide that the adjusted number and location of warehosues are the same in part I
(shown in figure 3).

5 Model Analysis

This section analyzes how the approximation algorithm as mentioned in 4.3
applys in Part I, II, III in details and descriptions.

Team #6829 Problem B: Shop and Ship Page 28 of 53

5.1 Algorithm Complexity

Algorithm Complexity n n=300 Orders of Magnitude
An NP-Hard 0-1 Matrix n! 300! 10614

IDA* n
k
! 300

k
! 10262 − 1032

Approximation Algorithm n3log2n or 3003log2300 or 106 − 108

n2log2n 3002log2300

Table 5: Three Algorithm Complexities (generally 2 < k < 10)

It is easily noticed that the approximation algorithm has outstand others remarkably.

6 Model Testing and Conclusion

6.1 Land Cover Rate

As shown in table 4, a fairly optimal solution is to achieve 95.26% of land area coverage with
22 warehouses, which poses a total weight of taxes of 3.36157 × 106 million dollars. This
solution is locally optimal and covers a reasonable amount of area with a reasonable amount
of warehouses, which is preferrable under most occasions.

The cities that are chosen are: Lawrence, Little Creek, Alamance, Birmingham,
Miamitown, Algoma, Alcester, Westport, Absarokee, Pinesdale, Kansas City, Shreveport,
Bedford, DelRio, Littleton, Castleford, Phoenix, Algodones, Fresno, Portland, Eugene and
Pendleton (For details, see table 4).

6.2 Model advantages

This model holds a polynomial time complexity, which infers a rather faster run time, that
gurantees that the selection of the result can be obtained immediately after the decision was
made. In this way this model is way faster than most of the methods available in means of
time.

In addition, one can simply change the constant m to a larger number, that will take
more sample points into consideration, and greatly improve the precision. This, on one side
can be applied to arbitrary countries and even single states. In this aspect, this model we
designed can also be applied to other regions and countries if the company decided to enlarge
its market, with minor modifications.

Thus, in comparatively ignorable time required, the company could quickly decide
where to build its warehouses and immediately start its business. Since the need of financial

Team #6829 Problem B: Shop and Ship Page 29 of 53

support is crucial in businesses, we should note that the faster a decision was made, the
more beneficial it is to the company.

In addition, the ψ variable in this model can be greatly extended to other expertises
and aspects. Extensions to more businesses and tax definitions can be made in short time.

We can conclude from the aforementioned arguments that this model is not only
visibly fast, but also extremely extensible for further exploits in newly risen markets.

6.3 Model disadvantages

This model, however fast, is not a perfect model. We already argued that a perfect solution
is not achievable with polynomial time complexity. Therefore this model could not retrieve
the best solution existent. This might not gurantee the perfect minimization of taxes and
minimization of warehouses’ count.

In other words, this means the solutions we chosen are not actually the best solutions
but clearly well-formed solutions we can obtain in limited time. The only defect in our
model is that it cannot produce a perfect solution, in reasonable time, which is the major
disadvantage of our model.

References

[1] http://www.bls.gov/news.release/cesan.nr0.htm Bureau of Labor Statistics of U.S,
2016.

[2] WANG Jiqiang, Model and algorithm for set cover problem, Computer Engineering and
Applications, Volume 49, 2013.

[3] http://www.bea.gov/newsreleases/regional/gdp state/2012/pdf/gsp0612.pdf,
Advance 2011 and Revised 19972010 GDP-by-State Statistics, Bureau of Economic
Analysis, U.S. Department of Commerce, 2012.

[4] http://www.tax-rates.org/taxtables/sales-tax-by-state, Sales Tax Rates By
State, Tax-Rates.org, 2016.

[5] https://www.ups.com/maps?loc=en US&srch pos=1&srch phr=maps, Ground Time-
in-Transit Maps, United Parcel Services, 2016.

[6] http://www.python-requests.org/en/master/user/quickstart/, More complicated
POST requests, Kenneth Reitz.

[7] http://pillow.readthedocs.io/en/latest/reference/Image.html Pillow: Image
Module.

Team #6829 Problem B: Shop and Ship Page 30 of 53

7 Appendixes

7.1 Web Crawler

data processor/const.py

1

2 states = [

3 ’AK’, ’AL’, ’AR’, ’AZ’, ’CA’, ’CO’, ’CT’, ’DC’, ’DE’, ’FL’,

4 ’GA’, ’HI’, ’IA’, ’ID’, ’IL’, ’IN’, ’KS’, ’KY’, ’LA’, ’MA’,

5 ’MD’, ’ME’, ’MI’, ’MN’, ’MS’, ’MT’, ’NC’, ’ND’, ’NE’, ’NH’,

6 ’NJ’, ’NM’, ’NV’, ’NY’, ’OH’, ’OK’, ’OR’, ’PA’, ’RI’, ’SC’,

7 ’SD’, ’TN’, ’TX’, ’UT’, ’VA’, ’VT’, ’WA’, ’WI’, ’WV’, ’WY’,

8]

9

10 # Range provided by http :// www.structnet.com/instructions/

zip_min_max_by_state.html

11 state_zip_idx = {

12 ’AK’: 99501, ’AL’: 35004, ’AR’: 71601, ’AZ’: 85001, ’CA’: 90001,

13 ’CO’: 80001, ’CT’: 6001, ’DC’: 20001, ’DE’: 19701, ’FL’: 32004,

14 ’GA’: 30015, ’HI’: 96701, ’IA’: 50001, ’ID’: 83201, ’IL’: 60001,

15 ’IN’: 46001, ’KS’: 66002, ’KY’: 40003, ’LA’: 70001, ’MA’: 1001,

16 ’MD’: 19701, ’ME’: 3901, ’MI’: 48001, ’MN’: 55001, ’MS’: 38601,

17 ’MT’: 59001, ’NC’: 27006, ’ND’: 58001, ’NE’: 68001, ’NH’: 3031,

18 ’NJ’: 7001, ’NM’: 87001, ’NV’: 88901, ’NY’: 10001, ’OH’: 43001,

19 ’OK’: 73001, ’OR’: 97001, ’PA’: 15001, ’RI’: 2801, ’SC’: 29001,

20 ’SD’: 57001, ’TN’: 37010, ’TX’: 75001, ’UT’: 84001, ’VA’: 20040,

21 ’VT’: 5001, ’WA’: 98001, ’WI’: 53001, ’WV’: 24701, ’WY’: 82001,

22 }

23

24 state_name_idx = {

25 ’AK’: ’Alaska ’, ’AL’: ’Alabama ’, ’AR’: ’Arkansas ’, ’AZ’: ’Arizona ’,

26 ’CA’: ’California ’, ’CO’: ’Colorado ’, ’CT’: ’Connecticut ’, ’DC’: ’Dist

of Columbia ’,

27 ’DE’: ’Delaware ’, ’FL’: ’Florida ’, ’GA’: ’Georgia ’, ’HI’: ’Hawaii ’, ’

IA’: ’Iowa’,

28 ’ID’: ’Idaho ’, ’IL’: ’Illinois ’, ’IN’: ’Indiana ’, ’KS’: ’Kansas ’, ’KY’

: ’Kentucky ’,

29 ’LA’: ’Louisiana ’, ’MA’: ’Massachusetts ’, ’MD’: ’Maryland ’, ’ME’: ’

Maine ’,

30 ’MI’: ’Michigan ’, ’MN’: ’Minnesota ’, ’MS’: ’Mississippi ’, ’MT’: ’

Montana ’,

31 ’NC’: ’North Carolina ’, ’ND’: ’North Dakota ’, ’NE’: ’Nebraska ’, ’NH’:

’New Hampshire ’,

32 ’NJ’: ’New Jersey ’, ’NM’: ’New Mexico ’, ’NV’: ’Nevada ’, ’NY’: ’New

York’, ’OH’: ’Ohio’,

33 ’OK’: ’Oklahoma ’, ’OR’: ’Oregon ’, ’PA’: ’Pennsylvania ’, ’RI’: ’Rhode

Island ’,

34 ’SC’: ’South Carolina ’, ’SD’: ’South Dakota ’, ’TN’: ’Tennessee ’, ’TX’:

’Texas ’,

Team #6829 Problem B: Shop and Ship Page 31 of 53

35 ’UT’: ’Utah’, ’VA’: ’Virginia ’, ’VT’: ’Vermont ’, ’WA’: ’Washington ’,

36 ’WI’: ’Wisconsin ’, ’WV’: ’West Virginia ’, ’WY’: ’Wyoming ’,

37 }

38

39 state_pixel_idx = {

40 ’AK’: (94, 285), ’AL’: (374, 235), ’AR’: (314, 213), ’AZ’: (118, 205)

, ’CA’: (39, 155),

41 ’CO’: (185, 158), ’CT’: (493, 110), ’DC’: (493, 122), ’DE’: (477, 152)

, ’FL’: (433, 283),

42 ’GA’: (405, 231), ’HI’: (207, 329), ’IA’: (299, 126), ’ID’: (112, 84)

, ’IL’: (344, 143),

43 ’IN’: (373, 146), ’KS’: (254, 169), ’KY’: (378, 186), ’LA’: (317, 264)

, ’MA’: (497, 101),

44 ’MD’: (478, 158), ’ME’: (511, 62), ’MI’: (379, 105), ’MN’: (294, 71)

, ’MS’: (346, 241),

45 ’MT’: (163, 52), ’NC’: (437, 200), ’ND’: (243, 71), ’NE’: (242, 132)

, ’NH’: (497, 85),

46 ’NJ’: (479, 125), ’NM’: (174, 210), ’NV’: (79, 134), ’NY’: (466 , 94)

, ’OH’: (403, 140),

47 ’OK’: (266, 206), ’OR’: (46, 70), ’PA’: (439, 132), ’RI’: (503, 107)

, ’SC’: (433, 219),

48 ’SD’: (239, 92), ’TN’: (366, 207), ’TX’: (239, 253), ’UT’: (129, 144)

, ’VA’: (445, 172),

49 ’VT’: (486, 80), ’WA’: (61, 43), ’WI’: (332, 90), ’WV’: (427, 158)

, ’WY’: (173, 103),

50 }

51

52 dist_colours_idx = [

53 (-1 , -1, -1), (255, 209, 36), (201, 132, 0), (147, 167, 8),

(133, 6, 0),

54 (255, 120, 0), (176, 166, 150), (0 , 129, 152), (184, 228, 212),

(204, 234, 141),

55]

data processor/city name download.py

1

2 import requests

3 import re

4

5 def download_city_by_zip_code(zip_code):

6 payload = {

7 ’loc’: ’en_US ’,

8 ’usmDateCalendar ’: ’11/13/2016 ’,

9 ’zip’: str(zip_code).rjust(5, ’0’),

10 ’stype ’: ’O’, # ’D’ for to , ’O’ for from

11 ’submit ’: ’Submit ’

12 }

13 req = requests.post(’https :// www.ups.com/maps/results ’, data=payload ,

verify=True)

14 html_data = req.text

15 # Matching ...

Team #6829 Problem B: Shop and Ship Page 32 of 53

16 m_rl = re.findall(r’Business days in transit .*? from

:[\t\r\n]*(.*?)[\t\r\n]*
’, html_data)

17 m_r = m_rl [0]

18 m_r = ’ ’.join(m_r.split(’ ’)[:-1])

19 city , state = m_r.split(’, ’)

20 city = ’ ’.join(i.title() for i in city.split(’ ’))

21 return city , state

22

23 f = open(’points.txt’, ’r’)

24 of = open(’cities.csv’, ’w’)

25 of.write(’ZIP code ,State ,City ,Image ID\n’)

26 for i in f.readlines ():

27 i = re.sub(’[\r\n]*’, ’’, i)

28 a, b = i.split(’ ’)

29 try:

30 c, s = download_city_by_zip_code(b)

31 except KeyboardInterrupt:

32 break

33 except:

34 c = ’Unknown City’

35 s = ’US’

36 fs = ’%s,%s,%s,%s’ % (b, s, c, a)

37 of.write(fs + ’\n’)

38 print(fs)

data processor/image downloader.py

1 import requests

2 import PIL

3 import PIL.Image

4 import io

5 for i in range(1, 691):

6 j = ’map_’ + str(i).rjust(4, ’0’)

7 k = ’https :// www.ups.com/using/services/servicemaps/maps25 /%s.gif’ % j

8 r = requests.get(k)

9 s = r.content

10 t = PIL.Image.open(io.BytesIO(s))

11 t.save(’%s.png’ % j)

12 exit (0)

data processor/main.py

1

2 import const

3 import io

4 import json

5 import PIL

6 import PIL.Image

7 import random

8 import re

9 import requests

10

Team #6829 Problem B: Shop and Ship Page 33 of 53

11 def get_states ():

12 """ get_states () -- Generator , returns all states """

13 for i in const.states:

14 yield i

15 pass

16

17 def get_zip_code_by_state(state_id):

18 """ get_zip_code_by_state(state_id) -- Gets valid ZIP code by state ID

."""

19 return const.state_zip_idx[state_id]

20

21 def get_name_by_state(state_id):

22 """ get_name_by_state(state_id) -- Gets human readable name by state

ID."""

23 return const.state_name_idx[state_id]

24

25 def get_days_by_colour(pix):

26 """ get_days_by_colour(pix) -- Get deliver days by colour index."""

27 for i in range(1, 9 + 1):

28 clr = const.dist_colours_idx[i]

29 if abs(pix [0] - clr [0]) > 10:

30 continue

31 if abs(pix [1] - clr [1]) > 10:

32 continue

33 if abs(pix [2] - clr [2]) > 10:

34 continue

35 return i

36 return 10

37

38 def get_image_by_zip_code(zip_code , get_image=True):

39 """ get_image_by_zip_code(zip_code) -- Downloads image through ZIP

code ,

40 from the UPS official site. """

41 # Downloading HTML

42 payload = {

43 ’loc’: ’en_US ’,

44 ’usmDateCalendar ’: ’01/07/2016 ’,

45 ’zip’: str(zip_code).rjust(5, ’0’),

46 ’stype ’: ’O’, # ’D’ for to , ’O’ for from

47 ’submit ’: ’Submit ’

48 }

49 req = requests.post(’https :// www.ups.com/maps/results ’, data=payload ,

verify=True)

50 html_data = req.text

51 # Retrieving image zip code.

52 try:

53 img_link = re.findall(r’<img id=" imgMap" src ="(.*?)"’, html_data)

[0]

54 except Exception as err:

55 raise Exception(’Unable to receive data from UPS server.’)

56 img_link = ’https :// www.ups.com’ + img_link

Team #6829 Problem B: Shop and Ship Page 34 of 53

57 if not get_image:

58 return img_link

59 # Retrieving image in binary

60 req = requests.get(img_link , verify=True)

61 img_data = req.content

62 return img_data

63

64 def get_image_by_state(state_id):

65 """ get_image_by_state(state_id) -- Gets valid image by state ID , in

colours."""

66 zip_code = get_zip_code_by_state(state_id)

67 img_data = get_image_by_zip_code(zip_code)

68 return img_data

69

70 def get_dist_by_state(state_id , img_data=None):

71 """ get_dist_by_state(state_id) -- Gets distance to this state by

state ID."""

72 if img_data == None:

73 img_data = get_image_by_state(state_id)

74 bytes_io = io.BytesIO(img_data)

75 image = PIL.Image.open(bytes_io)

76 image = image.convert(mode=’RGB’)

77 # The following array is the returning result

78 ret = {}

79 # For every state in mind ...

80 for ns_id in get_states ():

81 tup = const.state_pixel_idx[ns_id]

82 pix = image.getpixel(tup)

83 # print(pix)

84 days = get_days_by_colour(pix)

85 # print(get_name_by_state(ns_id), days) # Debugging purposes

86 ret[ns_id] = days

87 return ret

88

89 def get_dist_all_states ():

90 """ get_dist_all_states () -- Get distance between all states , returns

dict."""

91 res = {}

92 for state_id in get_states ():

93 print(’Processing data for "%s"...’ % get_name_by_state(state_id))

94 s_res = get_dist_by_state(state_id)

95 res[state_id] = s_res

96 return res

97

98 def download_dist_all_states(f_handle):

99 """ download_dist_all_states -- Format get_dist_all_states () in an OI

data

100 style , for input into C++ programs."""

101 ret = get_dist_all_states ()

102 print(’Saving data ...’)

103 for i in get_states ():

Team #6829 Problem B: Shop and Ship Page 35 of 53

104 for j in get_states ():

105 f_handle.write(’%s %s %d\n’ % (i, j, ret[i][j]))

106 return f_handle

107

108 def download_image_by_json(f_handle):

109 """ download_image_by_json(f_handle) -- Donwloads images of all

appeared

110 data , with JSON opened handle. """

111 data = f_handle.read()

112 j_data = json.loads(data)

113 img_lst = sorted(list(set(j_data[’image_index ’][i] for i in j_data[’

image_index ’])))

114 for i in range(0, len(img_lst)):

115 j = img_lst[i]

116 f_name = j.split(’/’)[-1:][0]

117 req = requests.get(j, verify=True)

118 img_data = req.content

119 image = PIL.Image.open(io.BytesIO(img_data))

120 image.save(’%s.png’ % f_name [:-4])

121 print(’Downloaded image %s. Completed %f%%’ % (f_name , float(i /

len(img_lst) * 100)))

122 pass

123 return

124

125 def i_get_dist_by_city(city_id , img_idx , coord_index):

126 """ i_get_dist_by_city(city_id) -- Gets distance to this city by city

#."""

127 img_name = ’../../ data/map_images/map_%s.png’ % str(img_idx).rjust(4,

’0’)

128 image = PIL.Image.open(img_name)

129 image = image.convert(mode=’RGB’)

130 # The following array is the returning result

131 ret = {}

132 # For every state in mind ...

133 for i in range(0, len(coord_index)):

134 tup = coord_index[i]

135 pix = image.getpixel(tup)

136 # print(pix)

137 days = get_days_by_colour(pix)

138 ret[i] = days

139 return ret

140

141 def i_get_all_city_dists_offline ():

142 fcsv = open(’../../ data/cities.csv’, ’r’)

143 cit_dat = []

144 for i in fcsv.read().split(’\n’):

145 if not i:

146 break

147 i = i.split(’,’)

148 # # This was removed in the first place.

149 if i[1] in {’AK’, ’HI’, ’PR’}:

Team #6829 Problem B: Shop and Ship Page 36 of 53

150 continue

151 cit_dat.append ((i[3], i[4], i[5]))

152 cit_idx = []

153 for i in range(0, len(cit_dat)):

154 cit_idx.append ((int(cit_dat[i][1]), int(cit_dat[i][2])))

155 for i in range(0, len(cit_dat)):

156 c_ret = i_get_dist_by_city(i, cit_dat[i][0], cit_idx)

157 for j in range(0, len(cit_dat)):

158 if c_ret[j] >= 8:

159 c_ret[j] = 7

160 fmt_str = ’%d %d %d’ % (i + 1, j + 1, c_ret[j])

161 print(fmt_str)

162 return

163

164 def choose_random_points(n):

165 """ choose_random_points(n) -- Choose n random points on map. """

166 img = PIL.Image.open(’../../ data/map_images/map.png’)

167 res = set()

168 img = img.convert(’RGB’)

169 while len(res) < n:

170 tup = (0, 0)

171 col = (0, 0, 0)

172 while col not in const.dist_colours_idx:

173 tup = random.randrange (0, img.width), random.randrange (0, img.

height)

174 col = img.getpixel(tup)

175 if tup not in res:

176 res.add(tup)

177 img.putpixel(tup , (0, 255, 255))

178 return sorted(list(res))

179

180 def main():

181 """ main() -- called when opening in shell."""

182 rp = choose_random_points (3000)

183 fcsv = open(’../../ data/cities.csv’, ’r’)

184 cit_dat = []

185 for i in fcsv.read().split(’\n’):

186 if not i: break

187 cit_dat.append(i.split(’,’)[3])

188 cit_idx = []

189 for i in range(0, len(cit_dat)):

190 c_ret = i_get_dist_by_city(i, cit_dat[i], rp)

191 for j in range(0, len(rp)):

192 if c_ret[j] > 1: continue

193 fmt_str = ’%d %d’ % (i + 1, j + 1)

194 print(fmt_str)

195 # Sample points ’ locations not saved.

196 fcsv.close ()

197 return 0

198

199 if __name__ == ’__main__ ’:

Team #6829 Problem B: Shop and Ship Page 37 of 53

200 exit(main())

7.2 Data Processor

graph solver/graph.h

1

2 #ifndef GRAPH_H_

3 #define GRAPH_H_

4

5 #include <iostream >

6 #include <fstream >

7 #include <sstream >

8 #include <stdexcept >

9

10 #include <cstdlib >

11 #include <cstdio >

12 #include <cstring >

13 #include <cmath >

14

15 #include <map >

16 #include <set >

17 #include <queue >

18 #include <stack >

19 #include <algorithm >

20

21 using namespace std;

22 // No more than 48 nodes and 48^2 edges.

23 // Using more memory for sake of avoiding SIGSEGVs.

24 const int maxn = 60;

25

26 template <typename _T>

27 std::vector < std::vector < _T > > make_quad_matrix(int size , _T zero)

28 {

29 std::vector < std::vector < _T > > ret_vec;

30 ret_vec.clear ();

31 for (int i = 0; i <= size; i++) {

32 std::vector < _T > vec;

33 vec.clear ();

34 for (int j = 0; j <= size; j++)

35 vec.push_back(zero);

36 ret_vec.push_back(vec);

37 }

38 return ret_vec;

39 }

40

41 template <typename _T>

42 std::vector < std::vector < _T > > make_quad_matrix(int n, int m, _T zero)

43 {

44 std::vector < std::vector < _T > > ret_vec;

Team #6829 Problem B: Shop and Ship Page 38 of 53

45 ret_vec.clear ();

46 for (int i = 0; i <= n; i++) {

47 std::vector < _T > vec;

48 vec.clear ();

49 for (int j = 0; j <= m; j++)

50 vec.push_back(zero);

51 ret_vec.push_back(vec);

52 }

53 return ret_vec;

54 }

55

56 #endif

graph solver/descat wrkr.cpp

1

2 /*

3 * This class processes the scatterization of nodes. Every single node is

processed

4 * and sent to this class for distinguishment. This makes the need of std

:: string

5 * amidst the process unnecessary.

6 */

7 class DescatterizationWorker

8 {

9 protected:

10 std::map <std::string , int > state_to_id_map;

11 std::map <int , std::string > id_to_state_map;

12 public:

13 DescatterizationWorker(void)

14 {

15 std:: string state_ids [49] = { "",

16 "AL", "AR", "AZ", "CA", "CO", "CT", "DC", "DE", "FL", "GA",

17 "IA", "ID", "IL", "IN", "KS", "KY", "LA", "MA", "MD", "ME",

18 "MI", "MN", "MS", "MT", "NC", "ND", "NE", "NH", "NJ", "NM",

19 "NV", "NY", "OH", "OK", "OR", "PA", "RI", "SC", "SD", "TN",

20 "TX", "UT", "VA", "VT", "WA", "WI", "WV", "WY"};

21 // Pushing in data with Complexity O(n*logn)

22 for (int i = 1; i <= 48; i++) {

23 this ->state_to_id_map[state_ids[i]] = i;

24 this ->id_to_state_map[i] = state_ids[i];

25 }

26 return ;

27 }

28 std:: string convert(int in) {

29 if (id_to_state_map.find(in) == id_to_state_map.end())

30 return "NH";

31 std:: string out = id_to_state_map[in];

32 return out;

33 }

34 int convert(std:: string in) {

35 if (state_to_id_map.find(in) == state_to_id_map.end())

Team #6829 Problem B: Shop and Ship Page 39 of 53

36 return 30; // NH

37 int out = state_to_id_map[in];

38 return out;

39 }

40 } descat_wrkr;

graph solver/graph base.cpp

1

2 /*

3 * This is a base class for all solutions , which holds edge manipulation

and

4 * taxes , where taxes are defaulted to 0.0% (As we omit taxes in Part I).

5 * All solution classes must inherit this class with public properties.

6 */

7 class DeliverGraph

8 {

9 public:

10 // Using adjacent tables to store edges. Guranteed O(m) time

complexity

11 // and memory complexity for inserting all edges.

12 struct edge

13 {

14 int u, v; // From node #u to node #v

15 int len; // Distance between node #u and #v, also the days

required to ship.

16 edge *next; // Saving adjacency

17 };

18 edge *edges[maxn];

19 long double taxes[maxn];

20 long double gsp[maxn];

21 // Implements an edge insertion.

22 void add_edge(int u, int v, int len)

23 {

24 edge *p = new edge;

25 if (u == v) len = 1; // Guranteed ...

26 p->u = u; p->v = v; p->len = len;

27 p->next = edges[u]; edges[u] = p;

28 return ;

29 }

30 // Set state taxes , in long double.

31 void set_state_tax(int state , long double tax)

32 {

33 this ->taxes[state] = tax;

34 return ;

35 }

36 // Set state GSP , in long double (though it is commonly int)

37 void set_state_gsp(int state , long double GSP)

38 {

39 this ->gsp[state] = GSP;

40 return ;

41 }

Team #6829 Problem B: Shop and Ship Page 40 of 53

42 };

graph solver/graph base mat.cpp

1

2 /*

3 * This is a base class for all solutions , only its styles are applied as

matrix

4 * styles.

5 */

6 class MatrixGraph

7 {

8 public:

9 int n;

10 std::vector < std::vector <int > > dist;

11 std::vector <long double > taxes;

12 std::vector <long double > gsp;

13 // Implements an edge insertion.

14 void add_edge(int u, int v, int len)

15 {

16 if (u == v) len = 1; // Guranteed ...

17 dist[u][v] = len;

18 return ;

19 }

20 // Set state taxes , in long double.

21 void set_state_tax(int state , long double tax)

22 {

23 this ->taxes[state] = tax;

24 return ;

25 }

26 // Set state GSP , in long double (though it is commonly int)

27 void set_state_gsp(int state , long double GSP)

28 {

29 this ->gsp[state] = GSP;

30 return ;

31 }

32 void init(int n)

33 {

34 this ->n = n;

35 this ->dist = make_quad_matrix(n, 0);

36 for (int i = 0; i <= n; i++) {

37 this ->taxes.push_back (0.0);

38 this ->gsp.push_back (0.0);

39 }

40 return ;

41 }

42 };

graph solver/sol np.cpp

1

2 #include "graph.h"

Team #6829 Problem B: Shop and Ship Page 41 of 53

3

4 #define DO_NOT_USE_LOW_PRECISION_SOLVER

5

6 /*

7 * This is a graph inherited from DeliverGraph.

8 * Will process data in a non -polynomial time complexity and linear memory

9 * omplexity.

10 * Is faster than pure brute force because of the use of IDA*.

11 */

12 class NonPolynomialGraphSolver : public DeliverGraph

13 {

14 public:

15 int n;

16 // Not using iterative depth for Brute Force Search

17 bool deep_first_search(

18 long long int status ,

19 long long int matrix[],

20 int selecting ,

21 int select_begin)

22 {

23 // Reached target , checking if satisfies

24 if (selecting == 0)

25 return status == (2ll << n) - 2ll;

26 // Logically select all possible inheritors

27 for (int i = select_begin; i <= n; i++) {

28 bool tmp_res = deep_first_search(

29 status | matrix[i], // Logic or

30 matrix , // Copy and send status

31 selecting - 1, // Lower depth by 1

32 i + 1 // Select new beginning position

33);

34 if (tmp_res == true)

35 return true;

36 }

37 return false;

38 }

39 // Whether choosing #size rows for matrix can satisfy the operation.

40 bool satisfiable_matrix(long long int matrix[], int size)

41 {

42 // Evaluates through dfs.

43 return deep_first_search(

44 0, // Original status: zero must be considered

45 matrix , // Initial data

46 size , // To select #size

47 1); // Start from first point

48 }

49 // Evaluates final result , returns an integer.

50 // Has no optimization.

51 int evaluate(void)

52 {

53 this ->n = 48;

Team #6829 Problem B: Shop and Ship Page 42 of 53

54 // We can convert this graph into a matrix , for details please

read

55 // the paper on how to build this matrix.

56 int matrix[maxn][maxn];

57 memset(matrix , 0, sizeof(matrix));

58 for (int i = 1; i <= n; i++)

59 for (edge *ep = edges[i]; ep; ep = ep ->next) {

60 if (ep->len <= 1)

61 matrix[i][ep->v] = 1;

62 else

63 matrix[i][ep->v] = 0;

64 }

65 // Compressing matrix for better memory complexity

66 long long int matrix_c[maxn];

67 // // Print matrix , temporarily

68 for (int i = 1; i <= n; cout << endl , i++)

69 for (int j = 1; j <= n; j++)

70 cout << (matrix[i][j] ? "X" : "-") << ’ ’;

71 memset(matrix_c , 0, sizeof(matrix_c));

72 for (int i = 1; i <= n; i++) {

73 matrix_c[i] = 0;

74 for (int j = 1; j <= n; j++)

75 matrix_c[i] ^= (long long int)matrix[i][j] << j;

76 }

77 // Running graph with brute force search , evaluating if 10 is

satisfiable

78 // for common run.

79 // This is a binary search function.

80 int bin_left = 1, bin_mid = 0, bin_right = 10;

81 int res = n;

82 while (bin_left < bin_right) {

83 bin_mid = (bin_left + bin_right) / 2;

84 // printf (" Processing depth %d...\n", bin_mid);

85 bool bin_res = satisfiable_matrix(matrix_c , bin_mid);

86 if (bin_res) {

87 bin_right = bin_mid;

88 res = bin_mid;

89 } else {

90 bin_left = bin_mid + 1;

91 }

92 }

93 return res;

94 }

95 };

96

97 #ifndef DO_NOT_USE_LOW_PRECISION_SOLVER

98

99 void solution_1_low_precision(void)

100 {

101 std:: ifstream f_handle("../../ data/dist_stats.txt");

102 int cnt = 0;

Team #6829 Problem B: Shop and Ship Page 43 of 53

103 graph_solve.init (48);

104 while (! f_handle.eof()) {

105 std:: string from , to; // From node #... to #...

106 int dist; // Cost days

107 f_handle >> from >> to >> dist;

108 // Catch exception

109 if (from.length () < 1 || to.length () < 1)

110 break;

111 // Ignored states

112 if (from == "AK" || from == "HI" || to == "AK" || to == "HI")

113 continue;

114 // Adding state numbers

115 int from_idx = descat_wrkr.convert(from),

116 to_idx = descat_wrkr.convert(to);

117 // Inserting into graph.

118 graph_solve.add_edge(from_idx , to_idx , dist);

119 }

120 // Emulating taxes and GSP.

121 for (int i = 1; i <= 48; i++) {

122 graph_solve.set_state_tax(i, 0.00);

123 graph_solve.set_state_gsp(i, 40000.00);

124 }

125 // Evaluating result

126 graph_solve.n = 48;

127 std::pair <int , long double > result = graph_solve.evaluate ();

128 std::cout << result.first << ’ ’ << result.second << std::endl;

129 return ;

130 }

131

132 #endif

graph solver/sol np opt.cpp

1

2 #include "graph.h"

3

4 /*

5 * This is a graph inherited from DeliverGraph.

6 * Will process data in a near polynomial time complexity with linear

memory

7 * complexity. This class is highly optimized with branch cutting.

8 * This is unimplemented.

9 */

10 class NonPolynomialGraphSolverOptimized : public DeliverGraph

11 {

12 public:

13 };

graph solver/sol poly.cpp

1

2 #include "graph.h"

Team #6829 Problem B: Shop and Ship Page 44 of 53

3

4 #define DO_NOT_USE_HIGH_PRECISION_SOLVER

5

6 class PolynomialGraphSolver : public MatrixGraph

7 {

8 public:

9 int n;

10 // Using Chvatal algorithm to solve set covering problem , with a

matrix ,

11 // described in vectors.

12 std::vector <int > eval_res;

13 std::pair <int , long double > solve_set_cover(std::vector < std::vector <

int > > matrices)

14 {

15 // Final result

16 int set_count = 0;

17 long double total_cost = 0.0;

18 std::vector <int > final_res;

19 // The final array , to be queried and indexed

20 std::set <int > S;

21 std::map <int , std::set <int > > mat;

22 // Loading matrices to mat [O(n^2)]

23 for (int i = 1; i <= n; i++) {

24 std::set <int > st;

25 for (int j = 1; j <= n; j++)

26 if (matrices[i][j])

27 st.insert(j);

28 mat[i] = st;

29 }

30 // // Printing mat?

31 // for (int i = 1; i <= n; i++) {

32 // printf ("#%d: ", i);

33 // for (std::set <int >:: iterator j = mat[i]. begin (); j != mat[i

].end(); j++)

34 // printf ("%d ", *j);

35 // printf ("\n");

36 // }

37 // S is not full , until now. [Worst O(n)]

38 while (S.size() < n && !mat.empty()) {

39 // Best status to add into S.

40 int best_pos = 0;

41 int best_count = 0;

42 long double best_cost = 1e100; // Literally infinite.

43 // Iterate through all unchosen maps [O(n)]

44 for (std::map <int , std::set <int > >::iterator i = mat.begin();

i != mat.end(); i++) {

45 int union_count = 0;

46 int point_pos = i->first;

47 long double point_cost = gsp[point_pos] * taxes[

point_pos];

48 std::set <int >& st = i->second;

Team #6829 Problem B: Shop and Ship Page 45 of 53

49 // Iterate through set , and find existence [O(n * logn)]

50 for (std::set <int >:: iterator j = st.begin (); j != st.

end(); j++)

51 if (S.find(*j) == S.end())

52 union_count ++;

53 // Updating best status

54 if (union_count > best_count) {

55 best_pos = point_pos;

56 best_count = union_count;

57 best_cost = point_cost;

58 } else if (union_count == best_count

59 && point_cost < best_cost) {

60 best_pos = point_pos;

61 best_cost = point_cost;

62 }

63 }

64 // Update S by inserting elements [O(n * logn)]

65 std::set <int >& upd_st = mat[best_pos];

66 for (std::set <int >:: iterator j = upd_st.begin (); j !=

upd_st.end(); j++)

67 if (S.find(*j) == S.end())

68 S.insert (*j);

69 // Removing best status from all matrices [O(logn)]

70 mat.erase(mat.find(best_pos));

71 // Update final result

72 set_count ++;

73 total_cost += best_cost;

74 final_res.push_back(best_pos);

75 }

76 sort(final_res.begin (), final_res.end());

77 this ->eval_res = final_res;

78 return make_pair(

79 set_count ,

80 total_cost);

81 }

82 // Evaluate function by calling a set covering solution algorithm.

83 std::pair <int , long double > evaluate(void)

84 {

85 // Building matrix with graph

86 std::vector < std::vector <int > > graph_vec =

87 make_quad_matrix(n, 0);

88 for (int i = 1; i <= n; i++)

89 for (int j = 1; j <= n; j++)

90 if (dist[i][j] <= 1)

91 graph_vec[i][j] = 1;

92 // Getting result ...

93 return solve_set_cover(graph_vec);

94 }

95 };

96

97 #ifndef DO_NOT_USE_HIGH_PRECISION_SOLVER

Team #6829 Problem B: Shop and Ship Page 46 of 53

98

99 void solution_high_precision_import_graph(void)

100 {

101 std:: ifstream f_handle("../../ data/dist_stats.txt");

102 int cnt = 0;

103 graph_solve.init (245);

104 while (! f_handle.eof()) {

105 int from , to, dist; // From node #.. to #.., cost days

106 f_handle >> from >> to >> dist;

107 // Catch exception

108 if (from < 1 || to < 1)

109 break;

110 // Ignored states already removed in Python.

111 // Does not require state numbers.

112 // Inserting into graph.

113 graph_solve.add_edge(from , to , dist);

114 }

115 std::cout << "... Built graph .\n";

116 f_handle.close();

117 return ;

118 }

119

120 void solution_high_precision_output_result(void)

121 {

122 std::cout << "==> Evaluating result ...\n";

123 std::pair <int , long double > result = graph_solve.evaluate ();

124 std::cout << "... Total count of warehouses: " << result.first << "\n"

125 << "... Total weight of taxes: " << result.second << "\n"

126 << "... Selected ID of locations: ";

127 for (unsigned int i = 0; i < graph_solve.eval_res.size(); i++)

128 std::cout << " > #" << graph_solve.eval_res[i] << "\n";

129 return ;

130 }

131

132 void solution_1_high_precision(void)

133 {

134 solution_high_precision_import_graph ();

135 // Emulating taxes and GSP.

136 for (int i = 1; i <= 245; i++) {

137 graph_solve.set_state_tax(i, 0.00);

138 graph_solve.set_state_gsp(i, 40000.00);

139 }

140 graph_solve.n = 245;

141 // Evaluating result.

142 solution_high_precision_output_result ();

143 return ;

144 }

145

146 void solution_2_high_precision(void)

147 {

148 solution_high_precision_import_graph ();

Team #6829 Problem B: Shop and Ship Page 47 of 53

149 // Importing taxes and GSP.

150 for (int i = 1; i <= 242; i++) {

151 graph_solve.set_state_tax(i, 0.00);

152 graph_solve.set_state_gsp(i, 40000.00);

153 }

154 graph_solve.n = 242;

155 // Evaluating result.

156 solution_high_precision_output_result ();

157 return ;

158 }

159

160 #endif

graph solver/sol poly highprec.cpp

1

2 #include "graph.h"

3

4 class HighResPolynomialGraphSolver : public MatrixGraph

5 {

6 public:

7 // To choose m items from n subsets.

8 int n, m;

9 long double proximity_ratio;

10 // Using Chvatal algorithm to solve set covering problem , with a

matrix ,

11 // described in vectors.

12 std::vector <int > eval_res;

13 std::pair <int , long double > solve_set_cover(

14 std::vector < std::vector <int > > matrices)

15 {

16 // Final result

17 long double set_count = 0;

18 long double total_cost = 0.0;

19 std::vector <int > final_res;

20 std::cout << "... Working at coverage precision " <<

proximity_ratio * 100.0 / 0.958 << "%.\n";

21 // The final array , to be queried and indexed

22 std::set <int > S;

23 std::map <int , std::set <int > > mat;

24 // Loading matrices to mat [O(n^2)]

25 for (int i = 1; i <= n; i++) {

26 std::set <int > st;

27 for (int j = 1; j <= m; j++)

28 if (matrices[i][j])

29 st.insert(j);

30 mat[i] = st;

31 }

32 // S is not full , until now. [Worst O(n)]

33 while (S.size() < m * proximity_ratio && !mat.empty()) {

34 // Best status to add into S.

35 long double best_pos = 0;

Team #6829 Problem B: Shop and Ship Page 48 of 53

36 long double best_count = 0;

37 long double best_cost = 1e100; // Literally infinite.

38 long double epsilon = 1;

39

40 // Iterate through all unchosen maps [O(n)]

41 for (std::map <int , std::set <int > >::iterator i = mat.begin();

i != mat.end(); i++) {

42 double union_count = 0;

43 int point_pos = i->first;

44 long double point_cost = gsp[point_pos] * taxes[

point_pos];

45 std::set <int >& st = i->second;

46 // Iterate through set , and find existence [O(n * logn)]

47 for (std::set <int >:: iterator j = st.begin (); j != st.

end(); j++)

48 if (S.find(*j) == S.end())

49 union_count ++;

50 union_count /= sqrt(point_cost); //If for Part1 ,delete

this line

51 // Updating best status

52 if (union_count > best_count) {

53 best_pos = point_pos;

54 best_count = union_count;

55 best_cost = point_cost;

56 } else if (union_count >= best_count * epsilon

57 && union_count <= best_count

58 && point_cost <= best_cost) {

59 best_pos = point_pos;

60 best_cost = point_cost;

61 }

62 }

63 // Update S by inserting elements [O(n * logn)]

64 std::set <int >& upd_st = mat[best_pos];

65 for (std::set <int >:: iterator j = upd_st.begin (); j !=

upd_st.end(); j++)

66 if (S.find(*j) == S.end())

67 S.insert (*j);

68 // Removing best status from all matrices [O(logn)]

69 mat.erase(mat.find(best_pos));

70 // Update final result

71 set_count ++;

72 total_cost += best_cost;

73 final_res.push_back(best_pos);

74 }

75 sort(final_res.begin (), final_res.end());

76 this ->eval_res = final_res;

77 return make_pair(

78 set_count ,

79 total_cost);

80 }

81 // Evaluate function by calling a set covering solution algorithm.

Team #6829 Problem B: Shop and Ship Page 49 of 53

82 std::pair <int , long double > evaluate(

83 long double proximity_ratio_)

84 {

85 // Building matrix with graph

86 std::vector < std::vector <int > > graph_vec =

87 make_quad_matrix(n, m, 0);

88 for (int i = 1; i <= n; i++)

89 for (int j = 1; j <= m; j++) {

90 if (dist[i][j] == 1)

91 graph_vec[i][j] = 1;

92 else

93 graph_vec[i][j] = 0;

94 }

95 // Getting result ...

96 this ->proximity_ratio = proximity_ratio_;

97 return solve_set_cover(graph_vec);

98 }

99 } graph_solve;

graph solver/main.cpp

1

2 #include "graph.h"

3

4 #include "descat_wrkr.cpp"

5 #include "graph_base.cpp"

6 #include "graph_base_mat.cpp"

7

8 #include "sol_np.cpp"

9 #include "sol_np_opt.cpp"

10 #include "sol_poly.cpp"

11 #include "sol_poly_highprec.cpp"

12

13 void solution_very_high_precision_import_graph(void)

14 {

15 std:: ifstream f_handle("../../ data/dist_stats.txt");

16 int cnt = 0;

17 int n, m;

18 f_handle >> n >> m;

19 graph_solve.init(max(n, m));

20 graph_solve.n = n;

21 graph_solve.m = m;

22 std::cout << "... Building graph :\n";

23 while (! f_handle.eof()) {

24 int from , to, dist; // From node #.. to #.., cost days

25 f_handle >> from >> to;

26 // Catch exception

27 if (from < 1 || to < 1)

28 break;

29 // Ignored states already removed in Python.

30 // Does not require state numbers.

31 // Inserting into graph.

Team #6829 Problem B: Shop and Ship Page 50 of 53

32 graph_solve.add_edge(from , to , 1);

33 }

34 std::cout << "... Built graph .\n";

35 f_handle.close();

36 return ;

37 }

38

39 void solution_very_high_precision_output_result(

40 long double proximity_ratio)

41 {

42 std::cout << "==> Evaluating result ...\n";

43 std::pair <int , long double > result = graph_solve.evaluate(

proximity_ratio);

44 std::cout << "... Selected ID of locations: ";

45 for (unsigned int i = 0; i < graph_solve.eval_res.size(); i++)

46 std::cout << " > #" << graph_solve.eval_res[i] << "\n";

47 std::cout << "... Total count of warehouses: " << result.first << "\n"

48 << "... Total weight of taxes: " << result.second << "\n";

49 return ;

50 }

51

52 void solution_1_very_high_precision(

53 long double proximity_ratio)

54 {

55 solution_very_high_precision_import_graph ();

56 // Emulating taxes and GSP.

57 for (int i = 1; i <= graph_solve.n; i++) {

58 graph_solve.set_state_tax(i, 0.00);

59 graph_solve.set_state_gsp(i, 40000.00);

60 }

61 // Evaluating result.

62 solution_very_high_precision_output_result(proximity_ratio);

63 return ;

64 }

65

66 void solution_2_very_high_precision(

67 long double proximity_ratio)

68 {

69 solution_very_high_precision_import_graph ();

70 // Importing taxes and GSP.

71 std:: ifstream f_handle("../../ data/cities.csv");

72 for (int i = 1; i <= graph_solve.n; i++) {

73 std:: string line;

74 char line_ch [1024];

75 const char* split_ch = ",";

76 getline(f_handle , line);

77 // Copying line to line_ch

78 memset(line_ch , 0, sizeof(line_ch));

79 for (unsigned int j = 0; j < line.length (); j++)

80 line_ch[j] = line[j];

81 // Splitting with commas

Team #6829 Problem B: Shop and Ship Page 51 of 53

82 std::vector <std::string > splitted;

83 char* split_wrkr = NULL;

84 split_wrkr = strtok(line_ch , split_ch);

85 while (split_wrkr != NULL) {

86 std:: string tmp = split_wrkr;

87 splitted.push_back(tmp);

88 split_wrkr = strtok(NULL , split_ch);

89 }

90 // Getting splitted [6], splitted [8] in int and float , respectively

91 std:: stringstream sstr;

92 int cur_gsp = 0;

93 float cur_tax = 0.0;

94 sstr << splitted [6];

95 sstr >> cur_gsp;

96 sstr.clear ();

97 sstr << splitted [8];

98 sstr >> cur_tax;

99 // Setting gsp and taxes ’ data

100 graph_solve.set_state_tax(i, cur_gsp);

101 graph_solve.set_state_gsp(i, (long double)cur_tax);

102 }

103 solution_very_high_precision_output_result(proximity_ratio);

104 return ;

105 }

106

107 void solution_3_very_high_precision(

108 long double proximity_ratio ,

109 long double importance)

110 {

111 solution_very_high_precision_import_graph ();

112 // Importing taxes and GSP.

113 std:: ifstream f_handle("../../ data/cities.csv");

114 for (int i = 1; i <= graph_solve.n; i++) {

115 std:: string line;

116 char line_ch [1024];

117 const char* split_ch = ",";

118 getline(f_handle , line);

119 // Copying line to line_ch

120 memset(line_ch , 0, sizeof(line_ch));

121 for (unsigned int j = 0; j < line.length (); j++)

122 line_ch[j] = line[j];

123 // Splitting with commas

124 std::vector <std::string > splitted;

125 char* split_wrkr = NULL;

126 split_wrkr = strtok(line_ch , split_ch);

127 while (split_wrkr != NULL) {

128 std:: string tmp = split_wrkr;

129 splitted.push_back(tmp);

130 split_wrkr = strtok(NULL , split_ch);

131 }

132 // Getting splitted [6], splitted [8] in int and float , respectively

Team #6829 Problem B: Shop and Ship Page 52 of 53

133 std:: stringstream sstr;

134 int cur_gsp = 0;

135 float cur_tax = 0.0;

136 float gar_tax = 0.0; // Garments ’ taxes

137 sstr << splitted [6];

138 sstr >> cur_gsp;

139 sstr.clear ();

140 sstr << splitted [8];

141 sstr >> cur_tax;

142 sstr.clear ();

143 sstr << splitted [9];

144 sstr >> gar_tax;

145 // Setting gsp and taxes ’ data

146 graph_solve.set_state_tax(i, cur_gsp);

147 graph_solve.set_state_gsp(i,

148 (long double)cur_tax * (1.0 - importance) +

149 (long double)gar_tax * (importance));

150 }

151 solution_very_high_precision_output_result(proximity_ratio);

152 return ;

153 }

154

155 /*

156 * Main function , only takes care of input and output. Task number must be

added

157 * upon compile time , or defined inside at the header.

158 */

159 int main(int argc , char** argv)

160 {

161 // Defining which task to take , in a verbose way.

162 int task_index = 0;

163 std::cout << " # Enter task number , in an integer: ";

164 std::cin >> task_index;

165 std::cout << " - Processing task number " << task_index << "...\n";

166 // Processing task Part I

167 if (task_index == 1) {

168 long double proximity_ratio = 0.0;

169 long double proximity_ratio2 = 0.0;

170 while (true) {

171 std::cout << " # Enter proximity ratio to calculate (0 for

stop): ";

172 std::cin >> proximity_ratio2;

173 proximity_ratio = proximity_ratio2 * 0.958;

174 if (proximity_ratio <= 0.0)

175 break;

176 solution_1_very_high_precision(proximity_ratio / 100.0);

177 }

178 } else if (task_index == 2) {

179 long double proximity_ratio = 0.0;

180 long double proximity_ratio2 = 0.0;

181 while (true) {

Team #6829 Problem B: Shop and Ship Page 53 of 53

182 std::cout << " # Enter proximity ratio to calculate (0 for

stop): ";

183 std::cin >> proximity_ratio2;

184 proximity_ratio = proximity_ratio2 * 0.958;

185 if (proximity_ratio <= 0.0)

186 break;

187 solution_2_very_high_precision(proximity_ratio / 100.0);

188 }

189 } else if (task_index == 3) {

190 long double proximity_ratio = 0.0;

191 long double proximity_ratio2 = 0.0;

192 long double importance = 0.0; // Default should be 3.3%.

193 while (true) {

194 std::cout << " # Enter proximity ratio to calculate (0 for

stop): ";

195 std::cin >> proximity_ratio;

196 proximity_ratio = proximity_ratio2 * 0.958;

197 if (proximity_ratio <= 0.0)

198 break;

199 std::cout << " # Enter garment tax importance: ";

200 std::cin >> importance;

201 solution_3_very_high_precision(proximity_ratio / 100.0,

importance / 100.0);

202 }

203 } else {

204 throw std:: runtime_error("A task is required.");

205 }

206 return 0;

207 }

