
Redesign Staircases to Optimize Trains’
Unloading Time

Team # 4671

November 16, 2014

Team # 4671 Page 1 of 40

Summary

During our investigation of this situation, our team aimed to build an op-
timization model to analyze and minimize the unloading time of trains.
To achieve this goal, we put forward two models, the mathematical mod-
el based on queuing theory and the simulation model based on cellular
automaton model. Two models proved each other very well.

We first built our mathematical model, in which the exiting process is
divided into four time periods: alighting, walking on platforms, queuing,
and walking on staircases. We used the knowledge of former research and
d/d/s queuing model in order to calculate the time of the four periods.
Using this model, we determined that when there are two staircases, each
stair of which contains 2 passengers, the total unloading time for one
train is around 261 seconds, while that for two trains is approximately
498 seconds.

In addition, we adopted a simulation approach based on cellular automa-
ton model. Different from the mathematical model, the simulation model
simulated several periods of unloading processes as a complete process,
and considered the effects of congestion on the moving speed and moving
rule of passengers. In addition, the model could visualize the simulation
process. The simulation model gave the approximately same result as
the mathematical model: the unloading time for one train is 251 seconds,
while that for two train is 498 seconds. The results convinced us that
both of our models are reliable and accurate.

To understand the effect of different factors, we changed variables such
as the number of trains arriving, the location and number of staircases,
and the capacity of each staircase to see their impact on unloading time.
Running our simulation model, we found that: the most effective way to
minimize the unloading time is to increase the number of staircases; the
capacity of the staircase is also a very important factor; the location of
staircases does not affect the unloading time very much.

Lastly, we wrote an letter to the director of transportation to recommend
that our model be used to help design platforms’ layout and schedule
transit system. Although the context of our problem is simple, our sim-
ulation model can be applied to design of any complex transfer stations
by slightly adjusting some parameters.

1

Team # 4671 Page 2 of 40

1 Introduction and Problem Restatement

1.1 Introduction

Nowadays, more and more people choose to travel by public transporta-
tion. As an important part of public transportation,the train station
system is playing a key role in people’s everyday life. Meanwhile, the
popularity of traveling by train puts greater pressure on a station’s oper-
ation and brings about many new problems such as emergency response to
fires, explosions and terrorist attacks. Therefore, how to properly design
a station’s layout to minimize passengers’ exiting time becomes a vital
problem to the designers and operators of public transit systems. We
wanted to help solve these problems. For this purpose we built a mathe-
matical model and a simulation model to analyze the unloading time in
different situations. We analyzed the relationships of different parameters
in order to determine the key factors for unloading time. Our model can
help operators of public transportation system to optimize their design
and scheduling, provide better services and reduce accident rates.

1.2 Problem restatement

We wanted to build a model to analyze and optimize the time traveled
from the train to the street level exit of the station. We addressed situ-
ations with one fully occupied trains and two full occupied trains. Also,
we adjusted the moving speed of passengers and number of passengers to
see the impact. We then took other factors such as the location of the
staircases, the number of staircases and the capacity of the staircases into
consideration.

The most important factor is the total time it takes to evacuate all the
passengers.

2

Team # 4671 Page 3 of 40

Period 1:
(Queuing for exiting the train)

Period 2: Free-walking

Period 3: Queuing before the staircase

Period 4: Upstairs

Figure 1: The exiting process

2 Definitions, Assumptions and Variables

2.1 Definitions

As shown in Fig.1, the process what a passenger exits the station includes
four periods:

1. waits at the queue inside a car to exit the train;

2. walks towards the staircase;

3. waits in the queue to go upstairs;

4. moves upwards on a staircase.

Now we define some terms what will be used in the whole paper.

unloading time: the time when the last passenger walks onto the foot
of a staircase. In this paper we are mainly researching unloading time.
evacuation time: the time when the last passenger leave a staircase to
exit the station. We also call it exiting time in this paper.

3

Team # 4671 Page 4 of 40

2.2 Assumptions

In order to streamline our model, we have made several key assumptions.

Assumption: Each car of a train can contain 90 people.
Justification: There are 5 seats in each row in the given information.
The seating plans[1] searched from the Internet show that one car of a
train holds around 16 to 19 rows of seats, so we assume one car holds 18
rows in this paper.

Assumption: The staircases are distributed uniformly along the longi-
tudinal direction of the platform.
Justification: The uniform distribution can make passengers’ walking
distance the shortest.

Assumption: When a train arrives at the station, all passengers on the
train will unload.
Justification: From the given information, the station is a central sta-
tion which is the destination or transfer station of most people.

Assumption: Each queue in cars waiting to exit the train is a single
queue. Passengers get off the train by leaving the head of queue one by
one in order.
Justification: There are 5 seats in each row, so the center aisles in cars
are narrow.

Assumption: Passengers would choose only one from two exits of a car
to leave. They are distributed equally to two queues of the car.
Justification: Passengers always select the nearest exit.

Assumption: There are no people waiting on the platform to get on the
train when the train arrives.
Justification: No given information mentions the passengers waiting for
the train.

Assumption: When a passenger disembarks from train, he chooses one
staircase as his moving target based on crowding level and distance and

4

Team # 4671 Page 5 of 40

never changes the target.
Justification: Most people move in this way. Changing a moving target
consumes both time and effort.

Assumption: We do not differentiate the moving speed of the passen-
gers with different ages and genders.
Justification: Although this assumption simplifies the real world, it
could still satisfy the requirement of the models which estimate the aver-
age evacuation time.

Assumption: Once a passenger reaches the upper level of the station,
he exits the complex.
Justification: From the given information, to exit a station, passengers
must exit the car, and then make their way to a staircase to get to the
next level.

2.3 Variables

• N is the number of trains arriving at the same time. N is 1 or 2.

• n is the number of car to a train. A full train contains 90n passen-
gers.

• d is the length of each car in meters.

• p is the length of the platform in meters. For simplicity we assume
p = d ∗ n.

• w is the width of the platform in meters.

• q the number of stairs in each staircase.

• k is the number of people that each staircase can accommodate. k
is an integer greater than one.

• c is the number of passenger a single stair can accommodate. c =
k/q. c is an integer.

• s is the number of staircases in the platform.

5

Team # 4671 Page 6 of 40

• vp is the moving speed of the passengers on the platform in meters
per second.

• λ is the input rate of the queue before each staircase in persons per
second.

• µ is the output rate of each staircase in persons per second.

• t0 is the time for all passengers to get off the train in seconds.

• t1 is the time for a passenger on the platform to walk to the entrance
queue of the stairway in seconds.

• t2 is the maximum time for a passenger to wait at the queue before
the stairway in seconds.

• t3 is the time for a passenger to move on the stairway in seconds.

• t is the max time for a passenger to exit the station in seconds. We
named it evacuation time. t = t0 + t1 + t2 + t3.

• t′ is the max time for a passenger to walk on a staircase in seconds.
We named it unloading time. t

′
= t0 + t1 + t2.

3 Mathematical Model

3.1 Modeling Alighting Time

We modeled the alighting time first. Existing works have done research on
alighting and boarding time of the rail traffic passengers. The research[2]
completed by Hong Kong Polytechnic University has built a mathematical
model to estimate the dwelling time of trains in relation to the crowding
conditions at the stations, which is given as follows:

DT = C0 + C1 ∗ Al + C2 ∗Bo

where:
DT is dwelling time of train(s);
Al is the number of alighting passengers per train, and
Bo is the number of boarding passengers per train;
C0 is a constant (s), C1 and C2 are coefficients.

6

Team # 4671 Page 7 of 40

Since there is no given information of the number of boarding passengers
for this paper, we simplify the model to research the relation between
alighting time and the number of alighting passengers. The research[3]
completed by Shouhua Cao has shown that there is a linear relation be-
tween alighting time and the number of alighting passengers in Beijing
rail transit as shown in Fig. 2. The data what we observed from Shanghai
subway stations shows the similar tendency.

number of alighting passengers
A

lighting tim
e(seconds)

Figure 2: Fitted curve for alighting time and number of alighting
passengers in Beijing Rail Transit. Cited from[3]

According to the formula, the alighting time of 45 passengers (half pas-
sengers in one car)would be:

t0 = 0.5385 ∗ 45 + 1.1167 ≈ 26(seconds) (1)

So the max time for a passenger to get off the train is 26 seconds.

3.2 Modeling moving on platform

In this subsection we calculate t1, time a passenger walks from the exit
of the train to the queue before the landing of stairway.

t1 = (
p

2× s
)/vp =

5× d
s× vp

(2)

7

Team # 4671 Page 8 of 40

where p is the length of the platform, s is the number of stairways and
vp is the moving speed of the passengers on the platform. From Fig.3
we could see the average walking distance for one passenger is p/(2 ∗ s),
because the platform is separated into (2 ∗ s) parts by s stairways. So
the key to this model is to calculate vp, the average walking speed of
passengers on the platform.

向上 向上

p

p/4 p/4 p/4 p/4

Figure 3: Four partitions of a platform with 2 stairways

Many research works have studied people’s walking speeds under different
circumstances. Qingmei Hu gave a summary[4] on these studies. The
conclusions were:

1. If the crowd density ≤ 1.5 persons/m2, people can walk nonblock-
ingly.

2. People walk at an average speed of 1.34m/s in a nonblocking envi-
ronment.

3. If the crowd density ≥ 4 persons/m2, people stagnate and walk at
an average speed of 0.25m/s.

4. When the crowd density ranges from 1.5 persons/m2 to 4 persons/m2,
the moving speed and crowd density have an approximate linear
relation. Fig.4 is the summarized density-speed relationships for
underground stations.

In this paper we use the result [3] observed from Beijing’s rail transit
directly, which is a linear relation between density and speed as shown in

8

Team # 4671 Page 9 of 40

Density(person/m2)

speed

Figure 4: Density-speed relationship for underground stations.
Cited from [4]

Fig.5 :

vp = −0.4778 ∗ density + 1.759 (3)

For example, if the effective width of the platform is w = 6m (although
the width of the platform may larger than 6m, people tend to walk in
the center area on the platform, which is narrower than 6m), length of
a car is d = 20m, 900 passengers held by a fully occupied train with 10
cars get off from the train. The length of the platform can be calculated
as 20 ∗ 10 = 200m approximately. The density on the platform would be
900/(200 ∗ 6) = 0.75person/m2. The average walking speed of passenger
is (−0.4778 ∗ 0.75 + 1.759) = 1.40m/s. However, if two fully occupied
trains arrive at the station at the same time, the crowd density would be
1800/(6 ∗ 200) = 1.5person/m2. The average walking speed of passenger
becomes −0.4778 ∗ 1.5 + 1.759 = 1.04m/s.

According to the equation(2), when there are s = 2 stairways on the
platform, the average moving time on the platform of a passenger who
gets off one train is:

t1 = (
200

2 ∗ 2
)/1.40 ≈ 36(seconds)

9

Team # 4671 Page 10 of 40

Density (person / m2)

S
peed (m

 / s)

Figure 5: Fitted Linear Density-speed relationship observed at
Beijing rail transit. Cited from [3]

The average moving time on the platform of a passenger on the occasion
when two trains arrive together is:

t1 = (
200

2 ∗ 2
)/1.04 ≈ 48(seconds)

3.3 Modeling queuing

When passengers get off the train, they walk through the stairways to
get to the next level of the station. When there is a large number of
passengers, some of them would gather before the stairways in a short
time, and then wait in a queue to walk up the stairs.

We can regard the passenger flow attracted by a stairway as a queuing
system. As shown in Fig.6, the queuing system includes three processes:

1. Inputting: Passengers walk to the nearest stairway for service. λ
is the input rate of the queue(unit: persons/second), which is the
number of passengers that arrive at the queue in unit time. For

10

Team # 4671 Page 11 of 40

向上

queue stairway

q steps on the stairway

: input rate of queue
: output rate of queue and stairway

Figure 6: d/d/s queuing model of the stairway in rail station

each stairway, the number of passengers it provides service with is
(90 ∗ n ∗ N)/s. If we assume that the walking speed and walking
distance of each passenger on the platform are the same, we can
simply calculate the time interval between the first and the last
passenger arriving at the queue as the maximum alighting time t0.
Then the input time of each stairway tinput = t0, we can represent
λ as:

λ =
90 ∗ n ∗N
s ∗ t0

2. Queuing: When a passenger arrives at the queue before the stair-
case, if the stair is vacant,the passenger can use the stair immedi-
ately. If the stair is occupied, the passenger will wait until the stair
becomes vacant. The service rule of the stair is ”first come first
service”.

3. Outputting: The queue before the staircase has same output rate
as the staircase. We use µ (unit: persons/second)to denote the
output rate of a stairway. According to the existing research work[5]
and design specifications for underground in China[6], the maximum
capacity of a stairway in the stations is around 3600 p/m/hour, that
is 1 person/m/s, the width of the stairway is 1 meter. From our
observation in Shanghai subway stations, a stair of 1- meter width
can only accommodate 1 person. Since the given information does
not describe the width of stairway, we can calculate that one stair
of the stairway could contain c = k/q people. k is the number of
people a stairway could accommodate, q is the number of stairs in

11

Team # 4671 Page 12 of 40

each stairway. Hence:

µ = c =
k

q
(person/s).

Input amount
t

Output
amount
μt

time

C
um

ulative num
ber of

input and output passengers

tinput toutput

Q0

Q1

Figure 7: The input and output rate of the d/d/s queuing system. Cited
from [7]

From the assumptions and analysis we know that the service system of
each stairway is a fixed-length input, fixed-length output and single chan-
nel queuing system. The s stairways on the platform are a fixed-length
input, fixed-length output and multiple channel queuing system, that is
d/d/s queuing system. Fig. 7 is an approximate representation of the
d/d/s queuing system. The horizontal axis represents time, and the ver-
tical axis shows the cumulative number of input or output passengers.
The input number and output number are shown with two curves: λt
and µt.

The parameters in Fig.7 are:

12

Team # 4671 Page 13 of 40

tinput : the end time of the queue’s input

toutput : the end time of the queue’s output

Q0 : the total output amount at the end time of the queue’s input

Q1 : the total input and output amount of the queue. For each stairway
Q1 = 90nN/s.

λ : the input rate of the queue

µ : the output rate of the queue

Then we can calculate some important result.

the maximum number of waiting passengers:

Q = Q1 −Q0 = λ× tinput − µ× tinput

the end time of the queue’s output:

toutput = Q1/µ

the maximum delay time in the queue:

t2 = toutput − tinput =
Q1

µ
− t0 =

90 ∗ n ∗N
s ∗ c

− t0 (4)

3.4 Walking on the stairway

When a passenger walk on the foot of the stairway, he passes through the
stairway and then exit the station. Now we calculate t3, the time used to
pass through the stairway.

The research work[3] of Shouhua Cao collected many samples in Beijing
rail transit. The work observed the average pace of the passengers on the
up-going stairways is 1.85 steps/second. Hence,

t3 =
q

1.85
(5)

where q is the number of stairs(steps) on the stairway. If there are q = 15
stairs in each stairway, t3 ≈ 8s.

13

Team # 4671 Page 14 of 40

3.5 Calculating the total unloading time

Since t3 is a constant in our assumption, and it is a short time if compared
with other periods, in the later part of the paper, we mainly focus on op-
timizing unloading time, which is the process before a passenger walks on
a staircase. The total unloading time of a train includes: alighting time,
walking time on platform, and queuing time. According to equation(1)
to (4), we can get:

t
′
= t0 + t1 + t2 = t0 + t1 + toutput − t0

=
5× d
s× vp

+
90× n×N

s× c

(6)

vp =

{
1.4m/s, if N=1, one train arrives
1.04m/s, if N=2, two trains arrive

Table 1: The unloading time(s), t
′
= t0 + t1 + t2,

t=t
′
+ 8(d= 20,n= 10)

number of trains stairways t0 t1 t2 t
′

t
N = 1 s = 2, c = 2 26 36 199 261 269
N = 2 s = 2, c = 2 26 48 424 498 506
N = 1 s = 2, c = 3 26 36 124 186 194
N = 2 s = 2, c = 3 26 48 274 348 356
N = 1 s = 3, c = 2 26 24 124 174 182
N = 2 s = 3, c = 2 26 32 274 332 340

Table 1 shows the total unloading time in different situations. The worst
case is: if there are only 2 stairways which contain 2 people on each stair,
when 2 trains arrives at the same time, the total unloading time is 498s.

The result also shows that this model does not distinguish some situations
such as 2 stairways which contains 3 person on each stair and 3 stairways
which contains 2 person on each stair. In the mathematical model, the
output rate of the stairways service provided by these two circumstances
is the same, so the estimated unloading time of these two situations are
slightly different.

14

Team # 4671 Page 15 of 40

3.6 Strengths and weaknesses

Strengths:

• Our model gives a simple theoretical approach to calculate the ex-
iting time. We separate the exiting process into different periods
and calculate the average time or maximum time of each part. In
this way, we get relatively accurate exiting time.

Weakness:

• We assume that all people walk at a fixed speed on the platform
which does not meet the real expectation because people who come
out first walk at a faster speed, whereas people who get off later walk
at a slower speed since the platform is more and more crowded.

• In our theoretical model, the output rate of the stairways’ service is
(s×c), which could not distinguish the difference of two situations:
more staircase with narrow stairs and less staircase with wide stairs.

• Our theoretical model assume the stairways are distributed uni-
formly on the platform and could not calculate different unloading
time, particularly when the location of the stairways is changed.

• We assume passenger’s walking speed on staircase is a constant,
once a passenger stands on the staircase, he will exit the station
after a fixed time. This assumption could be optimized further.

To solve these problems, we add a simulation approach based on the
cellular automaton model.

4 Simulation Approach

To understand the effect of congestion level and number and location of
the stairways, we simulate the whole unloading process with a cellular
automaton model. We represent the plan of the platform in a grid of
cells. Passengers can move from one cell to another cell according the

15

Team # 4671 Page 16 of 40

(a)Passengers begin to get off from the train

(b)Passengers gather before the staircases

(c) More and more passengers wait before the staircases

(d) Most of the passengers have walked on the staircases

Figure 8: The unloading process(N=2, n=5,d=20)

specified moving rules. Fig. 8 is the simulation of unloading process of 2
trains arriving at the same time.

In this simulation, the platform is partitioned into a grid structure, each
with a size of 0.5m∗0.5m. The basis for this partition is that the minimum
space requirement for a person is 0.28m2, which is the result[8] pointed
out by National research council.

Cell is the basic unit of the grid structure. Each cell can contain only one
passenger at one time step(1 second). The location of a passenger can be
represented as the location of cell on the grid map. As shown in Fig.9,
the adjacent 8 cells are the possible moving directions of a passenger.
The model not only can simulate the movement of passengers, but also
simulate passengers changing speed under different crowd densities. From
Fig.9 we can see that in each time step, a passenger can move from 0 to
2 cells in different directions based on the crowd degrees.

16

Team # 4671 Page 17 of 40

In addition, the initial setup of the simulation includes: the length of each
car is 20m; each train has 10 cars; the length of platform is 200m; the
width of platform is 10m. Besides, the program can adjust the length and
width of the staircase according to its capacity. The detailed algorithm
used in the simulation is introduced in the next subsection.

Figure 9: The moving direction of a passenger

4.1 Algorithm

The program was run with Javascript, an interpreted scripting language
that can run only in an interpreter such as Internet Explorer. The process
of the simulation program is shown in Fig.11. The complete code is given
in Appendix B.

In the simulation program, each passenger first selects the nearest stair-
way as his target, then moves to the staircase according to the given
moving rule. Fig.10 is an example of the moving rule. In this example,
the staircase is the nearest one to the source node. Since each stair could
contain 3 passengers, the source has three moving targets. In our model,
we first calculate the shortest routes from the source to the three targets
with A∗ algorithm[9], then calculate the weights of each route according

17

Team # 4671 Page 18 of 40

A cell block by a passenger

Route A
Weight 25

Route B
Weight 23

Route C
Weight 22

A cell non-blocked by any
passenger

Weight=2

Weight=1

Route C

Route B

Route A

Weight of Route = ∑Weight of all cell

target source

A stair contains 3 people

Figure 10: Use A∗ algorithm and weight value to find the best route

to the equation:

weight of a route =
∑

weight of cells on the route

weight of a cell =

{
1, if no passenger holds the cell
2, if one passenger holds the cell

From Fig 10. we can see the current best route of the source is route
C, because it has smallest weight. This moving rule can assure that a
source node selects his target by considering both distance and crowd
level. This rule conforms to reality. Algorithm 1 is the description of the
moving rule.

The simulation process is shown in Figure 11. In each timestep, the
program moves the passengers on the cells of the grid map simultaneously
and iterate the loop until all passengers are moved out of the staircases.

18

Team # 4671 Page 19 of 40

Start

Initialize N, d, w, c, s, n; timestep=0;
Initialize location of s staircases
Initialize number of passengers;

Initialize queues to each exit of each car;
Initialize size of a cell;

Partition platform into a grid of cells

For each exit move a passenger in train into the
adjacent vacant cell; determine the nearest staircase as

the moving target of this passenger

For each cell, if there is a passenger in the cell
move the passenger according to the moving rule

For each staircase, if there is a passenger standing in
the cell adjacent to the staircase, move the passenger

out of the cell

if there are passengers
(waiting in queues to exit train)

or (walking on the cells to exit staircase)

timestep+1

end

N

Y

Figure 11: The flow chart of the simulation program

19

Team # 4671 Page 20 of 40

Algorithm 1 Moving rule.

Input:
source: location of the passenger.
c: the capacity of one stair.
target[1..c]: c cells on the grid map, represent the parallel c exits of
one staircase.
gridmap[]: All cells on the grid map, record the locations of all
passengers on the platform.

Output:
best target: select one from target[1..c] as the moving target;
best route: a route to best target;

1: calculate shortest routes from source to target[1..c] with A∗ algorithm,
get route[1..c];

2: calculate the weight value of route[1..c], for each cell on the route, if
no passenger hold the cell, then weight+=1, else weight+=2;

3: select the route with smallest weight as best route;
4: select the target of best route as best target;
5: if the first two cells in best route are vacant, move source to the

second cell in best route .
6: if the first cell in best route is vacant but second cell is occupied, move
source to the first cell in best route .

7: if the first two cells in best route are all occupied, no movement for
source.

8: return best route and best target;

4.2 Simulation result

Table 2: Compare the theoretical and simulated unloading time(s)

Number
of train

Stairways
Simulation model Mathematic model

t
′

t
′

N = 1 s = 2, c = 2 251 261
N = 2 s = 2, c = 2 498 498
N = 1 s = 2, c = 3 203 186
N = 2 s = 2, c = 3 373 348
N = 1 s = 3, c = 2 170 174
N = 2 s = 3, c = 2 322 332

All simulation results are achieved through running the program 10 times

20

Team # 4671 Page 21 of 40

for each group of parameters to calculate the average values. We selected
6 different situations to prove the reliability of our model. Table 2 shows
the comparison of the simulated result and the result of mathematical
analysis. The two results are similar, so they prove each other very well.
After careful observation we find that the simulation result is more close to
reality. It successfully distinguished the difference between two situations:
more staircases with narrow stairs and less staircases with wide stairs.
In the simulation result, the unloading time at the case (s=2,c=3) is
larger than the one at (s=3,c=2). This result is reasonable because more
staircases can alleviate the crowd level to help passengers move faster.

4.3 Sensitive analysis

To determine how the simulation model responds to the fluctuations in
the original setup, we run our model using different grid size (equivalent to
change people’s walking speed.) Our model proves to be not very sensitive
to small changes. After increasing the width of a cell by 10%, maximum
unloading time decreases less than 3%; after a similar decrease, maximum
unloading time increases less than 3%. As we can see, the unloading time
does not change much as the walking speed fluctuates. Our model is
proven to be stable.

Table 3: The simulated unloading time(s)
with different grid sizes(m*m)

trains staircases 0.5*0.5 0.45*0.45 0.55*0.55
N = 1 s = 2, c = 2 251 252 249
N = 2 s = 2, c = 2 498 499 494
N = 1 s = 2, c = 3 203 209 199
N = 2 s = 2, c = 3 373 381 364
N = 1 s = 3, c = 2 170 177 164
N = 2 s = 3, c = 2 322 330 318

4.4 Strengths and weaknesses

Strengths:

• Our model visualizes the whole process.

21

Team # 4671 Page 22 of 40

• The moving rule considers the effect of congestion level on moving
speed and moving direction, which is more realistic.

• The layout of the grid structure not only considers the space re-
quirements of passengers, but also considers the space requirement
of staircases, which is more realistic.

• Our model is flexible that it can be easily applied to more complex
transfer stations’ design only after adapting some parameters.

Weaknesses:

• Our model uses A* algorithm to calculate the shortest route to the
target at each time step, so the time complexity of the algorithm is
high. Optimization of the algorithm will be our future work.

• In this model we still assume passenger‘s walking time on staircase
is a constant, we only simulate the process before passengers stand
on the staircases.

5 Redesign the Stairways

5.1 More stairways

Table 4: The unloading time(s), c=2, s= 2 to 5

Number
of train

Stairways
theoretical result simulation result
Max=t0 + t1 + t2 Max Avg.

N = 1 s = 2, c = 2 261 251 154
N = 2 s = 2, c = 2 498 498 320
N = 1 s = 3, c = 2 174 170 99
N = 2 s = 3, c = 2 332 322 202
N = 1 s = 4, c = 2 131 136 72
N = 2 s = 4, c = 2 249 274 154
N = 1 s = 5, c = 2 104 101 55
N = 2 s = 5, c = 2 199 241 112

22

Team # 4671 Page 23 of 40

As we assumed, the staircases are placed uniformly along the longitudinal
direction of the platform. When staircases are added, the platform is
divided into more parts, which results in the change of passenger flow.

With the cellular automaton model, we assumed the situation where N
trains arrive at the same time. Each train has 10 cars with 900 people.
In this occasion, we varied the number of staircases (s = 2,3,4,5) to find
out how the unloading time varies with s. We compare the theoretical
result with the simulated one, which is shown in Table 4. Fig.12 shows
how the unloading time varies with the number of staircases when two
trains arrive.

Overall, more stairways is an effective solution to reduce the total unload-
ing time of trains. From the result we can see the unloading time reduces
greatly when we add a new stairway (s=3). The total unloading time for
one train decreases by 81 seconds. Nevertheless, the unloading time does
not decrease linearly with the increase of the number of staircases. The
subsequent additional staircase does not seem as effective as the former
one, as the decreasing time is 34 sec and 35 sec respectively. The pattern
is more obvious in such case as two fully loaded trains reach the station
at the same time.

498

332

249
199

498

322
274

241

0

100

200

300

400

500

600

2 3 4 5

un
lo

ad
in

g
tim

e(
s)

s: number of staircases

theoretical simulated

Figure 12: The unloading time varies with the number of staircases.
(N=2, c=2)

23

Team # 4671 Page 24 of 40

5.2 Widening staircase

we analyzed how the unloading time varies with the alteration of c(the
number of passengers a single stair can accommodate.) We set a similar
occasion: N trains arrive at the same time and each train has 10 cars
with 900 people. We compare the theoretical result with simulated one
in Table 5. The results show that widening staircase is still an effective
way to reduce the unloading time. But when we compare the results in
Table 4 and Table 5, we find that adding new staircases is more effective
than widening staircases.

Table 5: The simulated unloading time(s), s=2, c= 2 to 5

Number
of train

Stairways
theoretical result simulation result
Max=t0 + t1 + t2 Max Avg.

N = 1 s = 2, c = 2 261 251 154
N = 2 s = 2, c = 2 498 498 320
N = 1 s = 2, c = 3 186 203 118
N = 2 s = 2, c = 3 348 373 241
N = 1 s = 2, c = 4 149 179 99
N = 2 s = 2, c = 4 273 324 192
N = 1 s = 2, c = 5 126 168 86
N = 2 s = 2, c = 5 228 296 160

498

348

273
228

498

373
324

296

0

100

200

300

400

500

600

2 3 4 5

un
lo

ad
in

g
tim

e(
s)

c: capacity of a single stair

theoretical simulated

Figure 13: The unloading time varies with the capacity of staircases.
(N=2, s=2)

24

Team # 4671 Page 25 of 40

5.3 Changing the location of stairways

To minimize the evacuation time, we search the best location of the stair-
ways in the simulation program. The search process is shown in Fig.14.
Initially, we placed the stairways averagely distributed on the platform
as shown in Fig.2, then we moved the stairways outward and inward in a
changing distance to search for the best location of the stairways which
can yield the shortest unloading time.

向上 向上

p

p/4 p/4p/4p/4

向上 向上

p

p/4 p/4p/4p/4

(a)Moving outwards the two staircases

(b)Moving inwards the two staircases

Figure 14: Search the best location of the stairways

In the example we simulate the situation of N(=1 or 2) trains arriving at
the same time. There are 10 cars in each trains and 90 people will get off
from each car. The length of the platform is 200 meters and there are 2

25

Team # 4671 Page 26 of 40

stairways on the platform. Initially, the platform is separated by the two
stairway into an average of 4 partitions. Then we move the locations of
the stairway inward and outward x (= 5, 10, 15, 20) meters respectively.
The processes are run 10 times to calculate the average time. From the
result in Table 6 we find that the effect of changing locations of staircases
is not significant. Compared with the original symmetrical distribution of
the stairways, the unloading time of new lactations only changes a little
which can be ignored.

We proved this result through investigating two platforms in People’s
Square underground station in Shanghai. The platform of line 2 is divided
by four stairways into five parts averagely, while the platform of line 8 is
separated unequally, with two stairways in center and two stairways at
start and end of the platform. Both distributions do not show obvious
imbalanced passenger flows.

Table 6: The unloading time(s)
with different stairways’ locations

Locations N=1 N=2
uniform 251 498
→←5m 253 506
→←10m 251 488
→←15m 240 494
→←20m 243 500
←→5m 254 501
←→10m 248 502
←→15m 250 496
←→20m 243 487

6 Conclusion

We model the unloading process in a central station with two approach-
es: theoretical mathematics and computational simulation. By dividing
the process into four periods, we can compute exact alighting time, time
on the platform, queuing time and time on the staircase. However, this
method can not represent some factors, such as staircases’ different lo-
cations. Therefore, we also use a computational model to simulate the
exiting process. By comparing the results of theoretical and simulation

26

Team # 4671 Page 27 of 40

approaches, we are able to see that the two results are approximately the
same, while the result of the simulation approach may be better because
it takes many real factors into consideration. Also, we are able to vindi-
cate the accuracy and reliability of our simulation model, so we can use it
in further analysis when taking more complex factors into consideration.

Our computational simulation suggests that the number of staircases con-
tributes most to the decreasing of excavating time. While the width of
each staircase is an important relevant variable, it does not contribute as
much as the the number of staircases. On the contrary, the location of
staircases does not have a great impact on the unloading time.

Therefore, we give following suggestions to help relieve the traffic stress
on public transit stations. First, if two trains arrive at the same time,
1800 passengers will exit the station through 2 staircases, the operator
should arrange for the next train to arrive in no less than 500 seconds since
unloading time for 2 trains is 498 seconds. Secondly, when the layouts of
platform at present can not bear the flow of people, the transportation
station can simply add a staircase anywhere on the platform because the
location is not important and because widening the existing staircases is
neither efficient nor cost-effective.

In the future, we can apply our simulation model to more complex transfer
stations with criss-cross platforms and different train lines. Also, it would
be interesting to consider the distribution of walking speed rather than
set it to a fix number. Our model can be applied to different situations
and help rail transit designers to find the best plan for platforms and
staircases.

27

Team # 4671 Page 28 of 40

7 A letter to Director of Transportation

Dear Director of Transportation:

We built a mathematical model to examine the exiting process of a large
number of passengers. In the model we adapted some factors to reflect
the practical design requirements. These factors include the location and
number of the staircases and the capacity of each staircase. In addition
we used a computational approach to simulate the exiting process. Both
approaches could calculate the exiting time under different kinds of situa-
tions. We were glad to find out that the results of the mathematics model
and the simulation model are consistent with each other. According to
the model and simulation we created for the stations’ original condition
(2 staircases at a platform, 1 or 2 trains unloading at a time, every stair
holds 2 commuters at a time), the total time of unloading the passengers
is around 251 seconds for one train while approximately 498 seconds for
two trains.

The result revealed a problem: it took nearly 10 minutes, which is a
relative long time to evacuate passengers from two trains. Besides, if the
next train arrives at the station in 10 minutes before all the passengers
of the last train have exited the station, more and more passengers would
gather on the platform. This may lead to increased risk of accident.
To solve the problem, our model provided the solutions: to increase the
number of staircases or to expand the capacity of staircases. In addition
we concluded that the locations of staircases are not the key factors to
affect the exiting time.

We strongly recommend you to use our model to help design your trans-
portation system. The benefits of our model are that it can visualize the
whole unloading process and show the congestion level in a direct way and
that it can be applied to more complex transfer stations with criss-cross
platforms and different train lines after slightly adjusting some variables.
Our model is also strong because all the assumptions we make are con-
sistent with the real situation and are not arbitrary. The passengers’
moving speeds and moving rule were based on observation data given in
some former research. We feel confident that our models are fairly accu-
rate. Therefore, we respectfully recommend that the model be used to
help design the platforms for complex transform stations.

Sincerely yours, Himcm 2014 team 4671

28

Team # 4671 Page 29 of 40

References

[1] www.virgintrains.co.uk/assets/pdf/global/seating-plan.pdf

[2] William H.K. Lam, Chung-Yu Cheung, C.F. Lam. A study of crowding
effects at the Hong Kong light rail transit stations. Transportation
Research A, 33: 401-415, 1999.

[3] Shouhua Cao. Analysis and Modeling on Passengers Traffic Charac-
teristics for Urban Rail Transit. Ph.D Thesis. Beijin Jiaotong Univ.
2009.

[4] Qingmei Hu, Weining Fang, Guangyan Li, Yuquan Jia. Review on
Pedestrian Behavior Characteristics and Crowding Mechanism in
Public Buildings. China Safety Science Journal. Vol.18, No.8, Aug.
2008.

[5] J.J.Fruin. Pedestrian Planning and Design. Metropolitan Association
of Urban Designers and Environmental Planners Inc, 1971.

[6] GB50157-2003, Design Specifications for Underground. China Plan-
ning Press.Beijin, 2003.

[7] Xueping Rao, An analysis of passenger delays in stairs and escalators
of urban rail transit station. Traffic and Transportation. 2005,7.

[8] Transportation research board. Highway capacity manal 2000. Wash-
ington DC, National research council, 2000.

[9] Thomas H. Cormen, Charles E. Leiserson,Ronald L. Rivest, Clifford
Stein, Introduction to Algorithms. MIT press. 2005.

29

Team # 4671 Page 30 of 40

8 Appendix

8.1 Appendix A. The unloading time with varied
parameters

Table 7: The simulated unloading time with varied parameters(s),
N=1

s = 2 s = 3 s = 4 s = 5
c = 2 251 170 136 101
c = 3 203 142 112 94
c = 4 179 133 91 83
c = 5 168 126 93 74

Table 8: The simulated unloading time with varied parameters(s),
N=2

s = 2 s = 3 s = 4 s = 5
c = 2 498 322 274 241
c = 3 373 317 236 204
c = 4 324 225 168 150
c = 5 296 154 204 151

30

Team # 4671 Page 31 of 40

8.2 Appendix B. The simulation program

var astar = require(’ ./astar 1 . js ’) ;
var scale size = 6;
var length car = 20;
var number car = 10;
var number passenger per car = 90;
var width room = 10;
var length staircase = 5;
var width staircase = 3;
var length passenger = 0.5;
var width passenger = 0.5;
var passenger per staircase = 2;
var number staircase = 2;
var left = 1; //the direction of staircase
var right = 2;
var staircase direction = right;

var empty entry = 0x000001;
var passenger = 0x000004;
var blocked = 0 xffffff ;
var car body = 0 xffffff ;
var car door = 0 xffffff ;
var staircase entrance = 0x000008;
var staircase exit = 0 xffffff ;
var stair = 0 xffffff ;

var number train = 2;

var num col = Math.floor(length car ∗ number car / length passenger);
var num row = Math.floor(width room / width passenger + 2);

var total number passenger = number car ∗ number passenger per car ∗
number train;

var passenger in car = total number passenger;
var passenger out station = 0;

var staircase entrance list = new Array();
var staircase queue = new Array();
var staircase queue max length = 10;
var staircase offset = [8, −8];

var car list = new Array(number train);
// car list [1] = new Array(number car);
for (var i = 0; i < car list .length; ++i) {

car list [i] = new Array(number car);
for (var j = 0; j < car list [i]. length; ++j) {

car list [i][j] = {’passenger in car ’ :

31

Team # 4671 Page 32 of 40

number passenger per car};
}

}

var station = new Array(num row);
for (var i = 0; i < num row; ++i) {

station [i] = new Array(num col);
for (var j = 0; j < num col; ++j) {

if (i == 0 || i == num row − 1) {
station [i][j] = car body;

} else {
station [i][j] = empty entry;

}
}

}
var flag matrix = new Array(num row);
for (var i = 0; i < num row; ++i) {

flag matrix [i] = new Array(num col);
for (var j = 0; j < num col; ++j) {

flag matrix [i][j] = true;
}

}

function buildCar() {
for (var index car = 0; index car < number car; ++index car) {

station [0][Math.floor(index car ∗ (length car /
length passenger))] = empty entry;

station [num row − 1][Math.floor(index car ∗ (length car /
length passenger))] = empty entry;

station [0][Math.floor((index car + 1) ∗ (length car /
length passenger)) − 1] = empty entry;

station [num row − 1][Math.floor((index car + 1) ∗ (length car
/ length passenger)) − 1] = empty entry;

car list [0][index car][’row’] = 0;
car list [0][index car][’ left door ’] = Math.floor(index car ∗ (

length car / length passenger)) ;
car list [0][index car][’ right door ’] = Math.floor((index car

+ 1) ∗ (length car / length passenger)) − 1;
if (number train == 2) {

car list [1][index car][’row’] = num row − 1;
car list [1][index car][’ left door ’] = Math.floor(

index car ∗ (length car / length passenger)) ;
car list [1][index car][’ right door ’] = Math.floor((

index car + 1) ∗ (length car / length passenger))
− 1;

}
}

}

32

Team # 4671 Page 33 of 40

function buildStaircase () {
var start staircase row = Math.floor((num row − width staircase /

width passenger) / 2);
var end staircase row = Math.floor(num row − (num row −

width staircase / width passenger) / 2);
var interval = Math.floor((num col / number staircase −

length staircase / length passenger) / 2);

//setup staircase blocks
for (var index staircase = 0; index staircase < number staircase; ++

index staircase) {
//var start col = interval ∗ (index staircase + 1);
//var end col = start col + Math.floor(length staircase /

length passenger);
var start col =
Math.floor(index staircase / number staircase ∗ num col +

interval) + staircase offset [index staircase];
var end col =
Math.floor((index staircase + 1) / number staircase ∗ num col

− interval) + staircase offset [index staircase];
for (var row = start staircase row ; row <= end staircase row;

++row) {
for (var col = start col ; col <= end col; ++col) {

if (row == Math.floor((start staircase row +
end staircase row) / 2) ||

row == Math.floor((
start staircase row +
end staircase row) / 2) + 1) {

station [row][col] = stair ;
} else {

station [row][col] = blocked;
}

if (staircase direction == left) {
if (col == start col && row <

start staircase row +
passenger per staircase) {

station [row][col] =
staircase entrance ;

staircase entrance list .push
({

’row’: row,
’ col ’ : col

});
var tmp queue = new Array();
for (var i = 0; i <

staircase queue max length
; ++i) {

tmp queue.push(

33

Team # 4671 Page 34 of 40

empty entry);
}
staircase queue .push(

tmp queue);
} else if (col == end col && row <

start staircase row +
passenger per staircase) {

station [row][col] =
staircase exit ;

}
} else {

if (col == start col && row <
start staircase row +
passenger per staircase) {

station [row][col] =
staircase exit ;

} else if (col == end col && row <
start staircase row +
passenger per staircase) {

station [row][col] =
staircase entrance ;

staircase entrance list .push
({

’row’: row,
’ col ’ : col

});
var tmp queue = new Array();
for (var i = 0; i <

staircase queue max length
; ++i) {

tmp queue.push(
empty entry);

}
staircase queue .push(

tmp queue);
}

}
}

}
if (staircase direction == left) {

staircase direction = right;
} else {

staircase direction = left ;
}

}
}

34

Team # 4671 Page 35 of 40

function distance(row1, col1 , row2, col2) {
return Math.max(Math.abs(row1 − row2), Math.abs(col1 − col2));

}

function findPathToNearestStaircase(row, col) {
var staircase list = findNearestStaircaseList(row, col) ;
var path list = new Array();
var graph = new astar.Graph(station, { diagonal: true });
var start = graph.grid[row][col];

// console. log(staircase list) ;

for (var index = 0; index < staircase list .length; ++index) {
var staircase position = staircase list [index];
var end = graph.grid[staircase list [index][’row’]][

staircase list [index][’ col ’]];
var result = astar.astar .search(graph, start , end);
var distance left = 0;
for (var i = 0; i < result .length; ++i) {

distance left += station[result[i][’x’]][result [i][’y’
]];

}

var local path = {
’path’: result ,
’ distance left ’ : distance left
// − station[staircase list [index][’row’]][

staircase list [index][’ col ’]]
}
path list .push(local path);

}

return path list ;
}

function distanceLeft(row, col) {
// var staircase list = findNearestStaircaseList(row, col) ;
var path list = findPathToNearestStaircase(row, col);
var min left = num row + num col;

for (var i = 0; i < path list .length; ++i) {
min left = Math.min(min left, path list[i][’ distance left ’]) ;

}

return min left ;
}

function findNearestStaircaseList (row, col) {
var nearest staircase = null;

35

Team # 4671 Page 36 of 40

var min distance = −1;
var distance list = new Array();
for (var index staircase = 0; index staircase <

staircase entrance list .length; ++index staircase) {
distance list .push({

’row’: staircase entrance list [index staircase][’row’
],

’ col ’ : staircase entrance list [index staircase][’ col ’
],

’distance’ : distance(row, col , staircase entrance list
[index staircase][’row’], staircase entrance list
[index staircase][’ col ’])

})
}
// console. log(distance list) ;
distance list . sort(function (m, n) {

return m[’distance’] > n[’distance’] ? 1 : (m[’distance’] < n[
’distance’] ? −1 : 0);

})

return distance list . slice (0, passenger per staircase) ;
}

function contains(path, position) {
for (var i = 0; i < path.length; ++i) {

if (path[i][’row’] == position[’row’] &&
path[i][’ col ’] == position[’col ’]) {
return true;

}
}
return false ;

}

var time counter = 0;
var passenger in station list = new Array();
var passenger time cost = new Array();

function get passenger time cost(row, col) {
for (var index = 0; index < passenger in station list .length; ++

index) {
if (passenger in station list [index][’row’] === row &&

passenger in station list [index][’ col ’] === col) {
return passenger in station list [index][’time’];

}
}
return 0;

}

function move passenger into station(row, col) {

36

Team # 4671 Page 37 of 40

var distance left = distanceLeft(row, col) ;
passenger in station list .push({

’row’: row,
’ col ’ : col ,
’time’: 0,
’min distance’: distance left

});
}

function move passenger out of station(row, col) {
for (var index = 0; index < passenger in station list .length; ++

index) {
if (passenger in station list [index][’row’] === row &&

passenger in station list [index][’ col ’] === col) {
passenger time cost.push(passenger in station list [

index][’time’]) ;
passenger in station list . splice (index, 1);

station [row][col] = staircase entrance ;
flag matrix [row][col] = false ;
break;

}
}

}

function move passenger to(row from, col from, row to, col to) {
for (var index = 0; index < passenger in station list .length; ++

index) {
if (passenger in station list [index][’row’] === row from

&&
passenger in station list [index][’ col ’] === col from

&&
(station [row to][col to] === empty entry ||

station [row to][col to] ===
staircase entrance)) {

var distance left = distanceLeft(row to, col to) ;
passenger in station list [index][’min distance’] =

distance left ;
passenger in station list [index][’row’] = row to;
passenger in station list [index][’ col ’] = col to;

flag matrix [row to][col to] = false ;
station [row to][col to] = passenger;
station [row from][col from] = empty entry;
break;

}
}

}

buildCar();
buildStaircase () ;

37

Team # 4671 Page 38 of 40

var timer = 0;

function move passenger() {
for (var index = 0; index < passenger in station list .length; ++

index) {
++passenger in station list [index][’time’];

}

for (var row = 0; row < num row; ++row) {
for (var col = 0; col < num col; ++col) {

flag matrix [row][col] = true;
}

}

for (var index passenger = 0; index passenger <
passenger in station list .length; ++index passenger) {

var current passenger = passenger in station list [
index passenger];

// if (current passenger[’min distance’] === 0) {
// // continue;
// console. log(current passenger);
// }
// console. log(current passenger);
var path list = findPathToNearestStaircase(current passenger[

’row’], current passenger[’ col ’]) ;
var next position = undefined;
var min left = num row + num col;

var choosen path;
for (var i = 0; i < path list .length; ++i) {

var path = path list [i];
if (path[’ distance left ’] < min left) {

min left = path[’ distance left ’];
choosen path = path[’path’];

}
// console. log(path[’ distance left ’]) ;

}

var empty entry counter = 0;
for (var j = 0; j < choosen path.length &&

empty entry counter < 2; ++j) {
var position = choosen path[j];
if ((station [position [’x’]][position [’y’]] ===

empty entry ||
station [position [’x’]][position [’y’]] ===

staircase entrance) &&
flag matrix [position [’x’]][position [’y’]]) {
++empty entry counter;

38

Team # 4671 Page 39 of 40

} else if (station [position [’x’]][position [’y’]] ===
passenger) {

break;
}
next position = position;

}

if (next position !== undefined && flag matrix[next position[
’x’]][next position [’y’]]) {

move passenger to(current passenger[’row’],
current passenger[’ col ’], next position [’x’],
next position [’y’]) ;

}
}

passenger in station list . sort(function (m, n) {
return m[’min distance’] > n[’min distance’] ? 1 : (m[’

min distance’] < n[’min distance’] ? −1 : 0);
})

for (var index staircase = 0; index staircase <
staircase entrance list .length; ++index staircase) {

var staircase tmp = staircase entrance list [index staircase];
if (station [staircase tmp[’row’]][staircase tmp[’ col ’]] ===

passenger) {
if (time counter % 2 == 0) {

passenger time cost.push(
get passenger time cost(staircase tmp[’
row’], staircase tmp[’ col ’])) ;

}
move passenger out of station(staircase tmp[’row’],

staircase tmp[’ col ’]) ;
++passenger out station;

}
}

//get passenger out of car
for (var i = 0; i < car list .length; ++i) {

for (var j = 0; j < car list [i]. length; ++j) {
var row = car list [i][j][’row’];
var col = car list [i][j][’ left door ’];
if (car list [i][j][’ passenger in car ’] > 0) {

if (station [row][col] == empty entry) {
station [row][col] = passenger;
// setBitmap(row, col, passenger);
car list [i][j][’ passenger in car ’]
−= 1;

move passenger into station(row, col) ;
}

39

Team # 4671 Page 40 of 40

}
col = car list [i][j][’ right door ’];
if (car list [i][j][’ passenger in car ’] > 0) {

if (station [row][col] == empty entry) {
station [row][col] = passenger;
// setBitmap(row, col, passenger);
car list [i][j][’ passenger in car ’]
−= 1;

move passenger into station(row, col) ;
}

}
}

}

++time counter;
++timer;

}

while (passenger out station !== total number passenger) {
move passenger();

}
passenger time cost. sort(function (m, n) {

return m > n ? 1 : (m < n ? −1 : 0);
})

var total time cost = 0;
for (var i = 0; i < passenger time cost.length; ++i) {

total time cost += passenger time cost[i];
}

console. log(total time cost / total number passenger);

40

