
 
Team 5089 

Director of Transportation, 
 
We’re attempting to optimize the configuration of staircases for a platform. In doing this, the 
most important thing to consider is the passenger’s safety and happiness while exiting. In our 
model we strive to minimize first the amount of time it takes for a passenger to exit a train and 
get to street level and then the amount of time that a passenger stands waiting to use the 
staircase. We did this based on the assumption that people would be happiest and safest if 
they can exit the platform quickly without standing in a mob in front of the opening of the 
stairs.  
 
Keeping this in mind, we compared different platform configurations. For example, although 
putting one staircase at one end of the platform and putting one staircase in the middle of the 
platform yields effectively the same time for each passenger to get to street level, in the first 
configuration the time people arrive at the opening of the stairs is more staggered and 
therefore people are waiting for the stair for less long. This makes the first configuration 
better. 
 
Of course, adding more staircases reduces both the total and waiting time for each 
passenger. Of the configurations with two separate staircases, the one that minimizes these 
times the best has the stairs on either end of the platform. Anything with the stairs closer to 
the center of the platform increases waiting time, and a configuration with the two staircases 
together increases the total time. 
 
We find that model allows us to configure a platform to enhance the process of exiting the 
station for passengers in the most optimum way. Adopting our model would  improve overall 
passenger safety and happiness. 
 
Thank you, 
Team 5089 
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Summary Sheet 
 

Our problem deals with configuring the platform of a commuter train station in a way 
that minimizes the amount of time that it takes for passengers to exit the train and climb the 
stairs to street level. We used a worse case scenario of a full train of ten cars arriving at the 
platform and unloading all of its passengers, who then go directly to the staircase to exit the 
station. We optimized our configuration by looking at minimizing the average time spent 
getting to street level, and then minimizing the time spent waiting in line to get to the 
staircase.  

To solve this problem, we divided exiting the platform into three sections of time: time 
to get off the train and to the staircase, time spent waiting at the stairs, and time spent 
climbing the stairs. We first found walking speed to be normally distributed. Then, using both 
a numerical and analytical approach, found the distribution of arrival times of individuals to the 
staircase(s). The numerical approach used a program to procedurally generate scenarios and 
average them for an accurate result. The analytical approach found the cumulative distribution 
function associated with aggregate inverse scaled normal distributions. Once this data or 
distribution had been acquired, by taking data on how long it takes the average person to walk 
up a set of stairs, it was then possible to find both the average time to get to a staircase and 
the average time spent waiting. The time to ascend the stairs was unrelated to this distribution 
and found separately to be fixed. Because we assumed that spending time walking to the 
staircase was preferable to waiting en masse in front of the stairs, we found that positioning 
staircases at the ends of the platform was more optimal than having them towards the middle.  

Both models recommend three configurations that each work best in a different way. If 
it’s a priority to minimize the overall time, a configuration with three staircases positioned ⅙, 
½, and ⅚ of the way along the platform. However, if it’s a priority to minimize the crowding, 
two staircases at either end of the platform is optimal. Finally, if it is desirable to have only one 
staircase, it is best to position it on one end of the platform. 
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1 Introduction

Commuter train platforms are generally some of the busiest places in a city. Thousands of people
enter and exit every day, resulting in massive delays and crowds around the exits. People are enter-
ing and leaving the station, transferring trains, or simply staying in the same one. With all this in
mind, it may be difficult and time-consuming for each passenger to leave the station. There is often
a ”fan” of passengers near the stairway, as it cannot accommodate a large number of people all at
once. In the busiest scenario, a train entirely full of commuters arrives at a platform, and every
passenger gets off to exit the station. Though the platform will crowd up for just one train full
of passengers, the crowding would be even worse if two full trains happen to arrive at the same time.

In this problem, we look at a general platform and train. Given certain properties of the station
and the train, we attempt to develop a model that measures the time it takes for a commuter to
reach street level and exit a station and determines an optimum platform configuration, through
placement of staircases. We also consider how the time would be affected if there is a second train
that arrives at the same time. Lastly, we looked at seeing how the amount of people the staircase
can accommodate would change the time, as well as how the number of stairways would affect it.

2 Given Information

• Each train consists of at least 10 cars and is full to capacity. Each car has 2 exits, one near
each end. There is a center aisle with two seats on one side and three on the other, for each
row of seats.

• After exiting the car, all passengers must walk to the stairway to exit the station at street
level.

• The stairways can only accommodate two columns of people exiting to the top of the stairs.

• Each row of seating has an aisle with two seats on one side and three on the other.

3 Assumptions and Justifications

• Each train car’s doors split the car into equal parts (thirds). This is based on the
R143 car, used by the New York City Subway. Based on other references, the dimensions of
this car seems to be representative of the average car size. (Reference 1)

1
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• There is a three foot gap between each row of seats. Each row of seats has to have
a gap in order to allow room for people to be seated. Most seating arrangements on public
transportation vehicles seemed to have roughly this amount of space, so we decided to use it
as well.

• All staircases are the same dimensions, with a height of two stories (6 meters)
and where each step is 6 inches (.15 meters) tall. This was based on average staircase
dimensions and standard building codes. The width of the platform was assumed to be 50
feet, and the staircases were placed exactly in between the two rail tracks, so 25 feet from
each.

• Walking speeds follow the normal distribution N(1.34, 0.37). We assumed it was 1.5
m/s, or 4.92 feet/sec. From this reference, we also assumed the average speed for climbing up
stairs was .442 m/s. We reached a final value of 4 people/sec, which says the stairway lets 4
people exit every second. Based on the problem, let the number stairs in each staircase be q.
(Reference 3)

• The same number of people leave each car door. We assume that for each car, half
of the occupants go to each door to minimize the wait time to get out of the train. People
would also want to leave the car as soon as possible, so they would go towards the exit with
fewer people; because the doors are evenly spread apart on the car, half of the car should exit
through each.

• There is nobody standing in the train. The problem statement gives us the seating
arrangement for each row, so we assumed the entire occupancy comes from people seated in
the train, and that there is no one standing in the aisle. Additionally, with the dimensions of
the train car, it would be relatively unreasonable for people to stand in the aisle.

• There are no more than three staircases being added. Based on the size of our
platform and the number of people who could be on the platform, we found it would be
unreasonable to have more than three staircases.

• The stairway is at the end of platform. The initial configuration is to have one stairway
at one end of the platform. This is the configuration in many commuter stations, such as the
Center City Commuter Connection at the Market East Station in Philadelphia.

4 Models

4.1 Basic Quantities

Both the analytical and numerical models require the definition of some fundamental variables.
They are as follows:

n = number of cars to a train

d = length of each car

p = platform length

hc = horizontal distance between gate i and the stairs
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q = number of stairs in each staircase

β = number of stairwells

There is a 3 foot difference between each row, and 5 seats per row, which gave us the above
equation, so the number of people per car can be represented by: 5d

3 , making the capacity, or total
number of people in the station:

C =
5nd

3

where C is the total number of people in the train station. So when d = 60 and n = 10, the train
can hold 1000 commuters.

Given this information, it is possible to use either model in order to perform projections and
determine the amount of time it takes the average passenger to leave the station. The diagram
below gives the general diagram that assigns values to a few of the above variables. Each dot
represents a door and the number above is its assigned door number. In this case, the length of
each car is 60 feet, and length of the platform is 50 feet. These values came from averages that we
found online. We also made n equal to 10. From our assumptions, the doors split the car into equal
parts, so the doors on each car are 20 feet apart. The drawing also depicts how simple geometry
was used to calculate the walking distance to the staircase. This process was repeated for every
door on the train. The number of doors on the train is simply 2n, because there are two per car.

First, we would need to find the walking distance for a passenger from a certain door. Let c be
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Figure 1: Diagram of central station

the door number and let D be the walking distance for a passenger from a certain door. D can be
represented as:

D =

√(p
2

)2
+ (hc)

2

where h is defined as:

h =

{
60c-40 if c mod 2 ≡ 1

60c-20 if c mod 2 ≡ 0
; c ∈ {1, 2, . . . , 2n}

Then, we looked at the time it took for a person to reach the end of a staircase, or the rate at
which people move on/off the stairway. We obtained a value of 0.15m for the height of a stair, and
from 0.442m/s as the average climbing rate, we calculated a value of about 3 footsteps/sec. This
is about 1 footstep for every 1

3 of a second. Because it takes two footsteps to get up one step, this
translates to 1.5 people per step and then to 3 people per full step. We decided that because people
would be crowded up the stairs at more than one person every other step, we should introduce a
buffer that accommodates for this, which gives us 4 people per second as the speed of traveling up
the staircase.
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4.2 Numerical Model

In order to calculate time spent to get to ground level, we separate the different time periods: time
spent for each person walking to the stairway, Ti, the time spent waiting to get onto the stairs, W ,
and the time spent walking up the stairs, S. This can be presented by the equation below.

Ttotal = T +W + S

The time each person spent walking to the stairway, Ti, is calculated by the equation below.

Ti =
D

N(4.396, 1.213)

The average of those Ti values is then calculated for 100 runs with a computer program (See
appendix). Essentially, T is determined by finding the average walking times for 100 times the
capacity of the train(s) in the station.

To calculate average wait times, W, we find the number of people who have already made it to
the street by subtracting the time it takes for the first person to get to the stairs from the time it
takes for the average person to get to the stairs, which we then multiplied by 2Q to get the number
of people who have left when the last person gets in line.(Because arrival times are fairly linear,
we can approximate the arrival time of the final person by doubling the arrival time of the average
person.) We subtract this from the capacity, C, to get the number of people left in line. Dividing
this quantity by 2Qβ gives the wait time for the average person.

W =
C − 2

(
T − TMin

)
Q

2Qβ

Using empirical data, we found that it takes about 25 seconds to climb up 40 stairs. We used
this as a proportion for the rate at which it takes one to climb up stairs, and ultimately determined
S with the equation below.

S =
25

40
× q =

5q

8

4.2.1 Example Model

For our initial train car setup, we assumed 10 cars per train, so that the entire train length was 600
feet. We assumed of the length of the platform, p, was 50 feet. The doors on each car were placed
20 feet from each end, resulting the doors on each car being 20 feet apart from each other. Inside
each car there is a side with two seats and a side with three seats, separated by an aisle. With our
assumption that each row takes up three feet of space there are a total of 20 rows in each car. This
was the basic setup of every car, as shown in Figure 1.

Initially, the configuration with only one staircase was used. Other configurations were tested,
as explained later in the paper. The staircase was placed at the end of the platform (the end of the
train) in the between both tracks. This gives the staircase a distance of 25 feet from each rail track.
For each door on a car, we calculated the distance to the staircase, and the time it would take for
each group of people from that door to reach the staircase. The following calculations shows how
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we reached the number of passengers per door.

Based on our assumption, 50 people exit from each door, because 100/2 = 50.
Next, we used the Pythagorean Theorem to find the distances to the stairway from each door. The
time to reach the stairway was simply done by dividing the distance by the average walking speed,
4.92 feet/sec, as stated in Section 4. q = 6/.15 = 40 steps

Horizontal Distance of
Gate from Staircase
(feet)

Passenger’s Walking
Distance to Staircase
(feet)

Time To Reach Staircase
(sec)

20 32.0 6.5
40 47.2 9.6
80 83.8 17.1
100 103.1 21.0
140 142.2 28.9
160 161.9 32.9
200 201.6 41.0
220 221.4 45
260 261.2 53.1
280 281.1 57.1
320 321.0 65.2
340 340.9 69.3
380 380.8 77.4
400 400.8 81.5
440 440.7 89.6
460 460.7 93.6
500 500.6 101.8
520 520.6 105.8
560 560.6 113.9
580 580.3 118.0

Table 1: Table depicting the distance and time from each exit on the train
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After analyzing the data from this table and based on our assumption that the staircase is two
stories high, we found that q = 40. Based on the average speed for climbing up the stairs, we
determined it would take 25 seconds for each person to go up all of the stairs.

4.2.2 General Method

In the method above, we worked under assumptions given by the problem, but this method can be
made to be made completely abstract: able to work with any platform configuration.

Adding Multiple Stairways

The method above assumed only one stairway will be used and it will be placed at an end;
however, multiple configurations can be built if we change the position of that stairway, as well as
adding additional stairways. This is done by allowing the initial stairway to lie at the point

(
0, p2

)
and allowing other stairways to have x coordinates of up to nd. This would change our calculation
of D to be:

D =

√(p
2

)2
+ (hc − βMin)

2

where βMin is the closest stairwell.

Varying Car Number and Size

In the method above we assumed d and n were constants that were later used to get times;
however, these constants can be changed. Variability of these constants force h to be redefined as:

h =

{
d/3 ×

(
3c
2 + 2) if c mod 2 ≡ 1

d/3 ×
(
3c
2 + 1) if c mod 2 ≡ 0

; c ∈ {1, 2, . . . , 2n}

Allowing A Second Train

In order to account for the need to accommodate multiple trains on the platform, the model
must simply be changed to double the carrying capacity of a single car, assuming the additional
train is across the platform, of the same configuration (n and d values are equivalent), and opposing
car doors will open at the same time. Under the constraints of our model, all optimal configurations
developed for a single train is also viable for a two train system.

4.3 Analytical Model

While the numerical model produced accurate results on a whole, we noticed that there was a
tendency for large outliers to appear in the data. For instance, over individual runs, sometimes the
combination of a slow walker and the longest walking distance would produce one or two individu-
als who would take over ten minutes to reach the stairway. In order to address the problem in an
alternative way, we created the following analytical model.

We begin the analytical model with the given assumption that walking speeds follow the nor-
mal distribution ω ∼ N(1.34, 0.37). We would like to find the distribution of the arrival times of
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individuals at the stairs, Y , which has the relation Y = D
ω . If FY is the cumulative distribution

function of the random variable Y and Fω is the cumulative distribution function of the random
variable ω, then we can do the following to establish a relation:

FY (y) = Pr(Y ≤ x)

= Pr(ω−1 ∗D ≤ x)

= Pr
(
ω−1 ≤ x

D

)
= Pr

(
ω ≥ D

x

)
= 1− Pr

(
ω <

D

x

)
= 1− Fω

(
D

x

)

Because we know that the probability density function of a random variable is the derivate of
its cumulative distribution function, we also know:

FY (y) = 1− Fω

(
D

x

)
fY (y) =

D

y2
fω

(
D

x

)

We know the probability density function of ω because it follows a normal distribution, so:

fω(x) =
1

σ
√

2π
e

−(x−µ)2

2ω2

fY (x) =
D

y2
fω

(
D

y

)
=

D

y2σ
√

2π
e

−(Dy −µ)
2

2σ2

Because D was defined earlier to be

√
(hc)2 +

(
p
2

)2
, we can substitute in D to make fY (x) a

parametric equation.
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fY (x) =
D

y2σ
√

2π
e

−(Dy −µ)
2

2σ2

fY (x;hc, p) =

√
(hc)2 +

(
p
2

)2
y2σ
√

2π
e

−


√

(hc)2+( p2 )
2

y
−µ


2

2σ2

For a given train with n cars and doors at locations hc, we can then sum up and average
the probability density functions to get the aggregate probability density function of the entire
population of the train.

ftotal(x) =
1

2n

2n−1∑
i=0

fY (x;hn, p)

We can then integrate again to find the cumulative distribution function, which gives us the
distribution of arrivals:

Ftotal(x) =
1

2n

2n−1∑
i=0

1− Fω

(
D

y

)

= 1− 1

2n

2n−1∑
i=0

Φ


√

(hc)2+( p2 )
2

x − µ
σ


Once we have Ftotal(x), we can then multiply it by the capacity C to find the total number of

people who arrived at the stairs at time x. Furthermore, if we subtract from Ftotal(x) the quantity
4xβ, the rate at which people leave the queue, then we have the length of the queue at time x.
Finally, dividing this entire expression by 4β will give us the amount of time spent waiting when
the individual at time x joins the queue.

Fwaiting(x) =
Ftotal(x)− 4xβ

4β

The expected value of Fwaiting will be the average time spent waiting for someone who enters
the queue, which is the quantity W in the numerical model.

The quantity T is computed by simply taking the expected value of D
ω which simplifies as follows:
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Figure 2: Fwaiting and Ftotal Graphs

T = E

[
D

ω

]
= E

[
D

µ

]

=
1

2n

2n∑
i=1

√
(hc)2 +

(
p
2

)2
µ

Finally, S is computed in the same way as the numerical model which resulted in the expression:

S =
5q

8

4.3.1 Example Model

Running this simulation through Mathematica using the example parameters used in section 4.2.1,
we arrive at the following graphs for Ftotal and Fwaiting

5 Results

5.1 Evaluation of Configurations

The computer program ran 100 runs for the each configuration and gave an average based on the
staircase orientation and car carrying capacity. The data was based on the values shown in the
example earlier in the section. The numbers in parentheses are used to represent where on the
platform the stairways are placed. For example, 2 Stairways (1/4, 3/4) means that the stairways
were placed 1

4 of the way from one end, and 3
4 of the way from the same end. All of the staircases

are centered along the middle of the platform. The third column represents the required Q needed
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so that the last person who reaches the stairs would not have to wait. This was done by simply
taking the total capacity and dividing by 2T . We called this Qreq.

Qreq =
C

2T

Type of Stairway Average Time to
Staircase (sec)

Qreq (people/sec) Wait Time (sec)

1 Stairway (End) 77.304 6.467 52
1 Stairway (Mid-
dle)

39.530 12.648 90

2 Stairways (Ends) 39.426 12.682 45
2 Stairways (1/4,
3/4)

20.695 24.167 54.5

3 Stairways (Mid-
dle and Ends)

20.807 24.030 36.3

3 Stairways (1/6,
1/2, 5/6)

14.622 34.195 38.3

Table 2: Average waiting time and time to staircase values, including Qreq.

To evaluate the separate configurations in the table above, all factors were put in consideration
to find the best configuration. As stated earlier in the section, the total time to leave the station is
the sum of the walking time, the time waiting in the crowd, and the time on the stairs. However,
the time on the stairs is practically negligible because it is the same amount for every passenger;
all passengers are assumed to move up the stairs at the same rate. From our general equation,
we would sum average wait time and the average time to the staircase and some constant for S,
which is based on the number of stairs, q. We decided to use a ”crowdedness” metric by using Qreq

and dividing by 4β. We divided by 4β to account for the fact that 4 people/sec is the stairway up
speed, so the total number of people per second is 4 multiplied by the number of stairways. Let M
be this metric. From the values of the time to reach street level, we can easily see that the number
of stairways generally decreases the amount of total time needed to exit the station. Based on how
M was calculated, there would be a significant change if k varied. Because k was used to calculate
the ”crowdedness” metric, it shows that the crowdedness will decrease for every increasing value
of k. Because it is in the denominator, the ratio will decrease with larger values and increase with
smaller values.

From our data, we believe the configuration with stairways located 1/6, 1/2, and 5/6 along the
platform would create the situation in which the average time to leave the station is the lowest.
This is purely based on time, but we should also consider the excessive crowding that occurs at the
bottom of the staircase. The configuration with two stairways at the end have the least crowding
because some of people are already on the stairs while passengers farther away are just arriving at
the staircase. With this in mind, we would recommend using the configuration with 2 stairways
located at each end of the platform. Though the time is about 30 seconds higher, there would
be a much smaller crowd, which implies there is a higher probability that the passenger would
be spending more time walking to the stairs, instead of waiting. Walking to the stairs would



Team #5089 Page 12 of 18

Type of Stairway Time to Reach
Street Level (sec)

M

1 Stairway (End) 129.304 + 5q
8 1.617

1 Stairway (Mid-
dle)

129.530 + 5q
8 3.162

2 Stairways (Ends) 84.426 + 5q
8 1.585

2 Stairways (1/4,
3/4)

75.195 + 5q
8 3.021

3 Stairways (Mid-
dle and Ends)

57.107 + 5q
8 2.002

3 Stairways (1/6,
1/2, 5/6)

53.922 + 5q
8 2.549

Table 3: Total time to reach street level and ”Crowding” Metric

be a ”better use” of a passenger’s time. If it is necessary to have only one staircase, our model
recommends positioning it at one end of the platform.

5.2 Analytical Solution

Type of Stairway Average Time to
Staircase (sec)

Wait Time (sec) M

1 Stairway (End) 68.742 49.770 1.818
1 Stairway (Mid-
dle)

34.932 87.702 3.578

2 Stairways (Ends) 34.932 51.757 1.789
2 Stairways (1/4,
3/4)

18.308 41.279 3.413

3 Stairways (Mid-
dle and Ends)

18.308 56.037 2.276

3 Stairways (1/6,
1/2, 5/6)

12.719 55.697 3.276

Table 4: Data retrieved from the Analytical Model

This model has values of T which are generally always larger than the average which results
from that of the numerical model. This is most likely due to the fact that the reciprocal of a normal
distribution is skewed. In addition, W the waiting times for the configurations with 3 stairwells
are much higher than that of the numerical model due to skew. In the analysis of the numerical
models we determined that the distribution of arrivals to the staircases was fairly linear. However,
in the analytical approach much more skew comes into play and so the heavier initial queues creates
discrepancies. Thus the larger surges in the modeling of configurations with three stairwells creates
longer average waiting times than the numerical approach and the trailing off in the modeling of
the configurations involving one stairwell resulted in lower average waiting times.
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Despite these discrepancies, the conclusions from this model are the same as the numerical
model. As before, if we prioritize the speed at which people can exit the building, the configuration
of stairways located at 1/6, 1/2, and 5/6 would allow for the minimum time spent walking out of
the platform and station. However, if we are concerned with the crowding at the entrance of the
stairs, we advocate the configuration with two stairwells at both ends of the platform. Finally, if
the station has already been built or we are for some reason constrained to one staircase, then we
recommend placement at the end since the total times are the same and crowding is minimized.

6 Strengths

• Our model accounts not only for minimizing the time needed for a passenger to get to street
level, but also the time that passengers are left standing, which is more undesirable and unsafe
than having the passengers walking for longer.

• By using two methods, we’ve increased the amount of data one can take into consideration
when deciding upon a platform configuration. Presenting both models evaluates the accuracy
of the other model, and gives two different approaches to the same problem.

• By using a normal distribution for the walking speed of passengers, we accounted for a wider
range of commuters. This distribution would help in giving a more accurate representation
of the people walking, allowing us to have a better represent the total time it takes for the
passengers to reach the stairwell.

7 Weaknesses

• Our model doesn’t account for pre-existing crowding in the platform that could impact the
speed at which people can get to and climb the staircase. This could cause the time for people
to leave the station to increase, and it is more difficult to model a pre-existing crowd. The
model also assumes all passengers walk in a straight line to the stairs, but if there are other
commuters, it will undoubtedly make passengers move in different directions.

• Though the walking speed is for a normal distribution, it may not be completely representative
of everyone walking up the stairs. The speed for going up the stairs may not be accurate, as
the amount of people per second would be different based on traffic, and the time of day.

8 Sensitivity Analysis

Independent Variable Change (%) Dependent Variable Change (%)
+10% Q (speed going up stairs) - 21.0% W (wait time)
-10% Q + 26.9% W
+10% q (number of stairs) + 10% S (time spent on stairs)
-10% q - 10% S



Team #5089 Page 14 of 18

Error in our Q value would have a significant effect on W , which directly affects our Ttotal total
value. Because S is directly proportional to q, an error in the q value would have a proportional
effect on the S value.

Change in n
(Number of Cars)

Change in d
(Length of each Car)

Change in C
(Capacity of Train)

Effect upon T
(Average arrival time)

+ 50% - 33.334% 0% + 1.2% (negligible)
- 50% + 50% 0% + .26% (negligible)
+ 10% 0% + 10% + 9.2%
- 10% 0% - 10% -11.1%

Change in the n or d values without changing the overall capacity does not have a significant
effect on the T value, but changing the overall capacity has a directly proportional effect on T .

9 Future Applications and Extensions

Our model currently has general assumptions, and many factors are taken into account. However,
there are some that we were not able to integrate into our models. For example, we would like to
see how introducing a crowd to be on the platform initially would affect the time for a passenger to
leave the station. Some of the people on the platform may want to exit, while others may attempt
to get on the train at the same time passengers are getting off. It is also relatively unreasonable
for a fully occupied train to have all of its passengers to leave the train at the same station. As
mentioned before, some may transfer to other trains, stay on the same one, or loiter, so the crowd
attempting to exit would not be as packed.
Another extension of this project we could pursue is to look at how different train setups would
affect the timing. We would also investigate how the time it takes to reach street level varies based
on time of day. Generally, the mornings and evenings would have the more traffic compared to the
afternoon. This would cause the time to reach street level to be higher during the earlier and later
parts of the day. Including time of day and taking into account varying traffic would easily change
our distributions and calculated values.

10 Conclusion

Looking at the results from our metrics, we find that placing the staircase at the ends of the platform
is best for minimizing both total time and time spent waiting for use for the stairs. When adding
a second staircase the rule holds, and it’s best to have those at the ends. Finally, when adding a
third staircase, it becomes optimal to place them at 1

6 , 1
2 , and 5

6 . We also explored the effects of
changing the other variables and initial conditions in the model to see the effects, such as adding
a second train or how many people the staircase(s) can accommodate. To see how these changes
affect the total time that it takes to get to the street.
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12 Appendix

A program was made in the programming language JavaTM that calculates the time each person takes to
reach the stairwell. Relevant functions are documented below. Namely, the function that returns a random
set of random normal speeds for each person getSpeeds(), the function that returns distance each person
in their respective car doors must travel to reach the stairway findDisatnce(), the function that calculates
the time it takes to arrive at a stairway calcArrivalTimes(), and the function that runs these processes
100 times to develop an average Ti, main() and runMain().

// returns average of 100 runs to get representative average for parameters

public static void main(String[] args) {

double[] averages = new double[100];

double sum = 0;

for (int i = 0; i < averages.length; i++) {

sum += runMain(50);

}

double superAvg = sum / averages.length;

System.out.println("The average of " + averages.length + " runs is " + superAvg + " minutes");

}

static double runMain(int capacity) {

ArrayList<Double> walkingSpeeds = getSpeeds(capacity);

System.out.println(walkingSpeeds);

int[] openDoors = {20, 40, 80, 100, 140, 160, 200, 220, 260, 280, 320, 340, 380, 400, 440,

460, 500, 520, 560, 580};

double[] stairways = {0.0};

ArrayList<Double> distances = findDistance(openDoors, stairways);

ArrayList<Double> arrivalTimes = calcArrivalTimes(distances, walkingSpeeds);

System.out.println(arrivalTimes);

double sum = 0;

for (Double time : arrivalTimes) {

sum += time.doubleValue();

}

double average = sum / arrivalTimes.size() / 60;

System.out.println("Average = " + average);

return average;

}

// returns list of individual people speeds that will

// be a random numbers within a normal distribution

// mean: 4.396; stdev: 1.213

static ArrayList<Double> getSpeeds(int capacityPerCar) {

ArrayList<Double> speeds = new ArrayList<Double>();

Random rand = new Random();

for (int i = 0; i < capacityPerCar; i++) {
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speeds.add(rand.nextGaussian() * 1.213 + 4.396);

// nextGaussian() returns random normal numbers

// with a stdev of 1 and a mean of 0

}

return speeds;

}

static ArrayList<Double> findDistance(int[] doors, double[] stairways) {

// Returns an ArrayList of the closest distance each car door is from its respective stairway

ArrayList<Double> distances = new ArrayList<Double>();

for (int door : doors) {

ArrayList<Double> allDistances = new ArrayList<Double>();

for (double stairway : stairways) {

allDistances.add(Double.valueOf(Math.sqrt(Math.pow(25, 2) + Math.pow(door - stairway,

2))));

// calculates distance of car door from each stairway

}

distances.add(Collections.min(allDistances)); // people will flock to closest stairway

}

return distances;

}

static ArrayList<Double> calcArrivalTimes(ArrayList<Double> distances, ArrayList<Double> speeds) {

ArrayList<Double> arrivalTimes = new ArrayList<Double>();

for (Double tdistance : distances) {

double distance = tdistance.doubleValue();

for (Double tspeed : speeds) {

double speed = tspeed.doubleValue();

// assuming it takes 3/4 of a second for next person to exit

arrivalTimes.add(distance / speed + 3/4 * (arrivalTimes.size()));

}

}

Collections.sort(arrivalTimes); // sorts times from least to greatest

return arrivalTimes;

}

The following functions were used develop the analytical solution. The code below was written in Wolfram
MathematicaTM.

f1[x_] := 1 - Erfc[1.9111*(1.34 - 9.76/x)]/2

f2[x_] := 1 - Erfc[1.9111*(1.34 - 14.38/x)]/2

f3[x_] := 1 - Erfc[1.9111*(1.34 - 25.55/x)]/2

f4[x_] := 1 - Erfc[1.9111*(1.34 - 31.43/x)]/2

f5[x_] := 1 - Erfc[1.9111*(1.34 - 43.34/x)]/2

f6[x_] := 1 - Erfc[1.9111*(1.34 - 49.37/x)]/2

f7[x_] := 1 - Erfc[1.9111*(1.34 - 61.45/x)]/2

f8[x_] := 1 - Erfc[1.9111*(1.34 - 67.50/x)]/2
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f9[x_] := 1 - Erfc[1.9111*(1.34 - 79.63/x)]/2

f10[x_] := 1 - Erfc[1.9111*(1.34 - 85.71/x)]/2

f11[x_] := 1 - Erfc[1.9111*(1.34 - 97.86/x)]/2

f12[x_] := 1 - Erfc[1.9111*(1.34 - 103.94/x)]/2

f13[x_] := 1 - Erfc[1.9111*(1.34 - 116.10/x)]/2

f14[x_] := 1 - Erfc[1.9111*(1.34 - 122.19/x)]/2

f15[x_] := 1 - Erfc[1.9111*(1.34 - 134.46/x)]/2

f16[x_] := 1 - Erfc[1.9111*(1.34 - 140.45/x)]/2

f17[x_] := 1 - Erfc[1.9111*(1.34 - 152.63/x)]/2

f18[x_] := 1 - Erfc[1.9111*(1.34 - 158.72/x)]/2

f19[x_] := 1 - Erfc[1.9111*(1.34 - 170.90/x)]/2

f20[x_] := 1 - Erfc[1.9111*(1.34 - 176.99/x)]/2

g[x_] := (f1[x] + f2[x] + f3[x] + f4[x] + f5[x] + f6[x] + f7[x] +

f8[x] + f9[x] + f10[x] + f11[x] + f12[x] + f13[x] + f14[x] +

f15[x] + f16[x] + f17[x] + f18[x] + f19[x] + f20[x])/20

Plot[(g[x]*1000 - 4*x)/4, {x, 0, 300}]

Plot[g[x], {x, 0, 300}]


