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Summary 
The first quintessential problem we face is to determine the shortest time it takes to 
commute between different zones, which we solved by employing both the Dijkstra's 
Algorithm and the Floyd–Warshall Algorithm, favoring the latter in practice.  
Having reasoned that an ambulance arrangement that effectively covers the whole 
county is one that maximizes the population coverage, we applied the Tree Traversal 
programming method to Questions 1&2, and obtained solutions that succeeded in 
covering the entire region. We then analyzed the given data and answered Question 3 
by putting 1 ambulance in the location with the largest population coverage and 
calculated the number of people left without coverage. 
We optimized the basic model from 2 different angles, building matrixes and making 
accurate mathematic calculations to achieve both the most efficient way to cover the 
population and the fastest way to respond to emergency calls. We concluded that if 
ambulances are arranged in such a way so that the regions they cover overlap, they 
can provide more secure care in case one of them is dispatched, while the shorter the 
average time it takes an ambulance to reach designated areas is, the faster its response. 
Therefore we came up with 2 optimization plans, one to increase coverage overlap, 
and another to ensure fastest contact. We used standard deviation as a method of 
determining the best solutions among the optimized ones. 
To solve the problem concerning catastrophic scenarios we approached it from 3 
perspectives depending on the nature of the catastrophe, and proceeded to discuss 3 
different plans on how to station the ambulances so that they most substantially boost 
rescue rates. In case of sporadic outbreaks in random areas, we applied the 
aforementioned plan with large area overlaps so that enough ambulances will be on 
standby once 1 has been dispatched to deal with a crisis case. Our second plan is to 
have the ambulances repeatedly dispatched and retrieved all over the county, but 
found that this does not provide satisfactory coverage. Most notably, in cases where 3 
ambulances are involved and needs to reach all areas as fast as possible, we used the 
method of overall planning to determine several ways to station ambulances so that 
they can travel through all 6 zones within 8 minutes.  
We also went into specifics in the catastrophic scenario, and discussed 2 types of 
possible calamities in detail: the Radiation Model, in which a crisis erupts in a single 
location and spread throughout the county, downgrading in intensity as it spread, and 
the Diffusive Model, in which a crisis does not decrease in intensity but rather 
disseminate. We chose earthquakes to represent our Radiation Model and epidemics 
to represent our Diffusive Model. Using formulas from Richter's Magnitude Scale 
and the SIR Model we compiled 2 constructive plans on how to deal with these 
disasters.  
Having put these specific samples under minute examination, we concluded our 
models and factor models into a well-organized plan that can be elaborated to 
determine the best solution for counties and cities, regardless of their land area. 	  
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1. Introduction 

When some people are enjoying lives with their healthy bodies, others are suffering 
from illness and pains. In cases of severe injuries and acute diseases, the efficiency of 
emergency medical response plays a decisive role in saving lives, which is the reason 
why governments are starting to pay great attention to the establishment of 
highly-efficient emergency response mechanisms. However, there are still cases 
where people die from the lack of in-time medical assistance, especially the late 
arrivals of ambulances. The emergency response mechanism of ambulances is in need 
of improvement. 
 
Ambulances are vehicles used for the transportation of the sick or injured to, from or 
between places of treatment and are required in a variety of emergency situations, all 
of which potentially life threatening, including but not limited to unconsciousness, 
heart attacks, uncontrollable bleeding, burns, choking, convulsions, strokes, and 
extreme allergic reactions. 
 
However, according to the Daily Mail, although UK possesses one of the fastest 
emergency medical response mechanisms, only three of UK's 32 ambulance services 
reach a large majority of “immediately life-threatening” call-outs within 8 minutes, 
and thousands of people lost their lives because their ambulances took longer than 
necessary to reach them.  
 
Thus building an effective short-range mechanism to combat crisis should be 
considered one of the top priorities in the medical field. An optimization of the system 
would require better preparedness, faster response and more efficient operation.  
 
More importantly, where the ambulances are geographically stationed is of great 
importance in determining the time it takes for the rescue crew to reach the designated 
area. A well-situated ambulance station helps to maximize the number of residents 
that can be reached within a short time of an emergency call. 

 
 
 
 
 



Team	  #4155	   	   page	  5	  of	  46	  
	  

2. Breaking down the problem 

The overarching problem is to find the best locations of ambulances so as to provide 
emergency medical responses most efficiently. 
 
In this problem we have 2 variables, the population and the area (zones). In order to 
lessen our variables, we make a logical assumption that if the positioning of the 
ambulances allows them to cover the whole county, then the population coverage 
must also at its maximum. This means that in an ideal situation, all the 6 zones, and 
therefore all residents, are covered with available ambulance(s). Only when available 
ambulance(s) are unable to cover all zones do demographic differences need to be 
taken into discussion. We can accordingly simplify our model to contain only one 
variable: the zones the ambulances cover. 
 
Thus when approaching the problem, we prioritize solutions that cover all zones, and 
then approach solutions that are based on demographic density. 
We make a hypothesis that 3 ambulances, if positioned fittingly, can cover all zones, 
and proceed to find the possible solutions. 
 
We divided the four problems into two parts: 
 
(1) Question 1, 2 and 3 ask about the best locations of ambulances under a standard 

situation, which are considered the same in nature and thus can be dealt with in 
the same approach; 
 

(2) Question 4 asks about the distribution and placement of ambulances when a 
catastrophic event occurs, which means wider involvement and more urgent need 
of ambulances. 
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3. Assumptions 

(1) As to the "semi-perfect" condition mentioned in the problem, we assume that it is 
a condition in which no traffic, weather, or any objective hazards obstruct the 
ambulances, and in which all ambulances and related personnel are working under 
perfect condition and the capacity of emergency treatment departments is adequate to 
meet all the medical response requirement. 
 
(2) We assume that the population of each zone remains relatively stable, i.e. in a 
state of dynamic balance, and that under no circumstances will massive changes 
occur. 
 
(3) The "8 minutes" given means eight 60-second minutes, i.e. 480 seconds in all.  
 
(4) Under a catastrophic condition concerning epidemics, which will later be 
discussed in detail as an example of catastrophic occurrence, we assume that the 
disease transmission process begins instantly. 
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4. Variables Clarification 

Variable Name Explanation 
i The zone where the first ambulance is located. 
j The zone where the second ambulance is located. 
k The zone where the third ambulance is located. 
h(x) A logic discriminant array consists of six numbers，the 

initial value being 1. 
shuju A matrix whose rows and columns correspond to the 

rows and columns of Table 1 respectively, while i, j, k 
are all included in its rows. 

s An independent logic discriminant. 
Pt The total population of the county. 
Pr The overlap of the population covered by the 

ambulance(s). 
P(x) The population covered by the xth ambulance. 
Pu The population left without coverage. 
t(x) The least time possible it takes to reach Zone X. 
Tijk The average time needed to reach each zone when the 

ambulances are stationed in particular zones. 
Rp The overlap rate of the coverage. 
d The distance from Zone 1 to another arbitrary zone. 
ML Local magnitude. 
v Fatality rate. 
S Earthquake intensity. 
E[L] The expected number of fatalities. 
x(t) A continuous and differentiable function representing 

the number of affected people at a certain time. 
𝜆 The average effective contact per person. 
N The whole population of certain area. 
s(t) The ratio of the susceptible population number to the 

total population at a certain time. 
i(t) The ratio of the infected population number to the total 

population at a certain time. 
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5. Model I – Standard Condition 

The standard condition refers to a situation in which no wide-scale catastrophe is 
involved and all emergency responses are carried out according to normal procedures. 
 

5.1 Graphic Analysis 

As given in the problem settings, the county is divided into 6 zones, and the average 
time required to travel between each zone under semi-perfect condition is listed as 
below: 
 
	   Average	  Travel	  Times	  (min.)	  

Zones	   1	   2	   3	   4	   5	   6	  

1	   1	   8	   12	   14	   10	   16	  

2	   8	   1	   6	   18	   16	   16	  

3	   12	   18	   1.5	   12	   6	   4	  

4	   16	   14	   4	   1	   16	   12	  

5	   18	   16	   10	   4	   2	   2	  

6	   16	   18	   4	   12	   2	   2	  

Table 1 
 
The question setting requires that the ambulances arrive within 8 minutes of a 911 call, 
thus by circling out the average times below 8, we can obtain the zones which each 
location of ambulance(s) can reach within 8 minutes. 
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The population of each zone is varied and listed below: 
 

Zones	   Population	  

1	   50,000	  

2	   80,000	  

3	   30,000	  

4	   55,000	  

5	   35,000	  

6	   20,000	  

Total	   270,000	  

Table 2 
Through analyzing the data about the population each ambulance can cover when 
placed in each location, we can build up a conclusion about whether the ambulance(s) 
can cover all population when positioned in a certain way. Thus establishing the 
fundamental model on which further analysis can be made. 
 
Going over Table 1 given in the Problem, we can induce the time required to travel 
directly from one zone to another. For example, it takes 16 minutes to go directly 
from Zone 1 to Zone 6. However, unlike what some might suppose, the direct path 
may not be the shortest one we can take to commute between different zones. 
 
Due to the influence of variables like the layout of the city, highways and bus-way 
planning, etc., it might be more efficient not to draw a straight line from Zone 1 to 
Zone 6 and take that path, but to take a highway that may wind through Zone 2 along 
the way but offer much smoother travel.  This is a perfectly probable assumption, 
and we set out to analyze our data to find out the real shortest time to get from one 
zone to another.  
 
This idea of more vertexes (i.e. intersections) bringing faster travel is exemplified in 
the reasoning above. Notably, we did consider the fact that the more vertexes, the 
more intersections in the pathways, and hence the higher the possibility of traffic 
accidents. High chances for accidents, however, still does not pose a large threat to 
the model as a whole, because road accidents in general have slight occurrences and 
therefore will not undermine the accountability of the model. 
 
Our findings later will correspond with our assumption: the time shown on Table 1 is 
not the shortest time it takes to commute between Zones, and we will present here 
further results of our analysis. 
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5.2 Main Models 

Since the purpose is to maximize the people who can be reached within 8 minutes, the 
most ideal situation is that all the 6 zones are covered by the available ambulance(s), 
which means the whole population of the county is within reach of 
8-minute-emergency medical response. 
 
In order to make sure whether the average travel times given in Table 1 are in terms 
of the most efficient routes, and if not, obtain the real shortest times, we employ 
Floyd Algorithm Model and Dijkstra Algorithm Model to make further analysis. 
 

5.2.1 Dijkstra Algorithm Model 

To calculate the real shortest distance between two Zones, we apply Dijkstra's 
algorithm. This is an algorithm commonly used in routing processes, and is therefore 
directly applicable to our problem.  
 
Using this algorithm, we first define a starting point and an ending point, i.e. the two 
Zones involved, and then trace different pathways expanding outward from the 
starting point, labeling each intersection we pass along the way. Through a process of 
screening we repeatedly look for every intersection that is closer to the starting point 
until we reach the destination. Though the amount of calculation involved makes it a 
relatively slow process, there is no denying that this algorithm can ultimately help us 
find the shortest path. 
 
Here are the detailed steps we used to attain the results: 
 
(1) Let l(u0) = 0, while v≠u0 , let l(u0) =∞,S0={ u0}, i=0. 

 

(2) For each v∈ 𝑆𝚤 (𝑆𝚤 = V – Si ), replace l(v) with: 
 

min
!∈!"

{ 𝑙 𝑣 , 𝑙 𝑢 + 𝑤(𝑢𝑣)} 
 
   mark this minimum ui+1, and deem that Si+1=Si∪{ui+1}. 
 
(3) Stop when i=|V|-1, if i<|V|-1, replace i with i+1, and turn to (ii). 
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5.2.2 Floyd Algorithm Model 

To apply the Floyd Algorithm, we can start with any single unilateral path. The 
distance between two pinpoints is the weight of the path between them. If 2 points do 
not have a path connecting them, the weight becomes infinitely large. 
 
Suppose we have a pair of vertices u and v. If there is a vertex w so that the path from 
u to w and then to v is shorter than the known path we replace our figures. 
 
Next we manifest our thinking with an adjacent matrix, matrix G. If we can trace a 
path between points Vi and Vj, then G[i,j] has a value, which we will deem as d, where 
d represents the distance between i and j; if we cannot trace a path between Vi and Vj 
then G[i,j] becomes infinitely large.  
 
We use a matrix D to record the points we insert into the paths. D[i,j] represents the 
points we have to cross when going from Vi  to Vj, with the initial value of D[i,j] 
being j. After we start inserting points into the matrix, we compare the distance after 
we have inserted a point to the original distance. Let G[i,j]=min(G[i,j], G[i,k]+ G[k,j]).  
If the value of G[i,j] decreases, then we deem D[i,j]=k. In Matrix G we can find 
information about the distance between two given points, while in Matrix D we have 
information about the shortest path. 
 
Suppose, for example, that we want to trace a path from V5 to V1. Referring to Matrix 
D, if D(5,1)=3 then the path from V5 to V1 pass through point V3. The path is {V5, V3, 
V1}. If D(5,3)=3, then V5 and V3 are directly connected. If D(3,1)=1, then V3 and V1 are 
directly connected. 
 
The Floyd Algorithm is applicable to all APSP(All Pairs Shortest Paths) Problems. It 
is a dynamic programming algorithm with best graph effects and weights that can 
either be positive or negative. This algorithm is simple and effective. Since the triple 
cycle structure is very compact, the effectiveness of this algorithm greatly surpass that 
of the Dijkstra’s Algorithm, which has to undergo calculation |V| times. It can use 
simple codes to determine the shortest path between any two arbitrary spots. 
 
Therefore we favored the Floyd Algorithm Model over the Djkstra’s method and used 
it to get our results. 
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Thus we establish Table 3 as below, illustrating the relation between Zones and the 
shortest average travel times. 
	  

	   Shortest	  Average	  Travel	  Times	  (min.)	  

Zones	   1	   2	   3	   4	   5	   6	  

1	   1	   8	   12	   14	   10	   12	  

2	   8	   1	   6	   16	   12	   10	  

3	   12	   18	   1.5	   10	   6	   4	  

4	   16	   14	   4	   1	   10	   8	  

5	   18	   16	   6	   4	   2	   2	  

6	   16	   18	   4	   6	   2	   2	  

Table 3 
 
By listing the corresponding population and covered zones of each location, we can 
combine the above two tables and establish a new table as below, showing the 
population coverage according to the different locations of ambulances: 
 

 

5.2.3 Traversing Tree Model 

To solve the first 2 questions we decide to employ the Traversing Tree model, which 
is one of the most explicit and inclusive approaches to solving such questions. 
 
The tree traversal refers to "the process of visiting each node in a tree data structure, 
exactly once, in systematic way", and we apply it to our questions by the following 
steps: 
 
Suppose we put an ambulance in Zone 1. This ambulance covers Zone 1 & 2, and 
therefore we need to place ambulances so that they cover Zones other than 1 & 2. The 
solutions branch out into Zone 2,3,4 and 6. If we put the second ambulance in Zone 2, 
then we have covered Zones 1, 2 and 3. We need one more ambulance covering 
Zones 4, 5, 6, so we put the third ambulance in Zone 5. We have now come up with 

Ambulance	  Location	   Covered	  Zone	   Covering	  Population	  
1	   1,2	   130,000	  
2	   1,2,3	   160,000	  
3	   3,5,6	   85,000	  
4	   3,4,6	   105,000	  
5	   3,4,5,6	   140,000	  
6	   3,4,5,6	   140,000	  
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our first set of solution: putting the ambulances in Zones 1, 2 and 5.  
The following diagram showcases part of the thought process: 

 
Diagram 1 

 
Based on this search method, we can build a Traversing Tree Model that helps us 
enumerate all of the possible locations of the 3 ambulances. 
 

(1, 2, 5)    (1, 2, 6)    (1, 3, 4) 

(1, 3, 5)    (1, 3, 6)    (1, 4, 5) 

(1, 4, 6)    (1, 5, 6)    (2, 3, 4) 

(2, 4, 5)    (2, 4, 6)    (2, 3, 5) 

(2, 5, 6)    (2, 3, 6)    (1, 5, 5) 

(1, 1, 5)    (1, 6, 6)    (1, 1, 6) 

(2, 5, 5)    (2, 2, 5)    (2, 6, 6) 

(2, 2, 6) 
 
*The last 8 positioning methods are practicable, but not suggested, since we judge 
that in a Standard Condition, positioning 2 ambulances in the same zone is not 
effective. Although these methods can help ambulances reach designated areas within 
8 minutes, they are less efficient compared with a wider spread ambulance 
distribution. 
 

1 
3 

4 

5 

2 5 
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This means that under the last 8 circumstances, only 2 ambulances are needed. Thus 
the last 8 solutions are better fit as the answers to question two where only 2 
ambulances are available. 
 
We hereby list all the possibilities of the ambulance locations where all the 6 zones 
are within 8-minute-reach of the emergency medical response:  
(The        represents the zone covered by each ambulance, wile the ※ represents 
the location of each ambulance.) 
 
Solution 1 

	   Covered	  Zone	  &	  Location	   Total	  
Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   ※ 	   	   	   	   	  

No.3	   	   	   	   	   ※ 	   	  

	  

Solution 2 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No,1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   ※ 	   	   	   	  

No.3	   	   	   	   ※ 	   	   	  

	  

Solution 3 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   ※ 	   	   	   	  

No.3	   	   	   	   	   ※ 	   	  

	  

Solution 4 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   	   ※ 	   	   	  

No.3	   	   	   	   	   ※ 	   	  
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Solution 5 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   	   ※ 	   	   	  

No.3	   	   	   	   	   	   ※ 	  

	  

Solution 6 
	   Covered	  Zone	  &	  Location	   	   	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   	   ※ 	   	   	   	   	   	  
270,000	  No,2	   	   	   ※ 	   	   	   	  

No.3	   	   	   	   ※ 	   	   	  

	  

Solution 7 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   	   ※ 	   	   	  

No.3	   	   	   	   	   ※ 	   	  

	  

Solution 8 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   	   ※ 	   	   	  

No.3	   	   	   	   	   	   ※ 	  

	  

Solution 9 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   ※ 	   	   	   	  

No.3	   	   	   	   	   ※ 	   	  
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Solution 10 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   	   	   ※ 	   	  

No.3	   	   	   	   	   	   ※ 	  

	  

Solution 11 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   	   	   ※ 	   	  

No.3	   	   	   	   	   	   ※ 	  

	  

Solution 12 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   ※ 	   	   	   	  

No.3	   	   	   	   	   	   ※ 	  

	  

Solution 13 
	   Covered	  Zone	  &	  Location	   Total	  

Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   ※ 	   	   	   	   	  

No.3	   	   	   	   	   	   ※ 	  

 
Solution 14 

	   Covered	  Zone	  &	  Location	   Total	  
Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No.1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   ※ 	   	   	   	  

No.3	   	   	   	   	   	   ※ 	  
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Solution 15 

 
Solution 16 

	   Covered	  Zone	  &	  Location	   Total	  
Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No,1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   	   	   	   ※ 	  

 
Solution 17 

	   Covered	  Zone	  &	  Location	   Total	  
Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No,1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   	   	   ※ 	   	  

 
Solution 18 

	   Covered	  Zone	  &	  Location	   Total	  
Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No,1	   	   ※ 	   	   	   	   	   	  
270,000	  No.2	   	   	   	   	   	   ※ 	  

 
As shown in the tables above, there are 18 possibilities altogether. 
 
Thus we come to the conclusion that in the cases of 3 and 2 ambulances available, the 
ideal locations which all the 6 zones are covered are (1,2,5), (1,2,6), (1,3,4), (1,3,5), 
(1,3,6), (1,4,5), (1,4,6), (1,5,6), (2,3,4), (2,4,5), (2,4,6), (2,3,5), (2,5,6), (2,3,6) and 
(1,5), (1,6), (2,5), (2,6) respectively. 

5.2.4 Maximum Coverage of Population 

Based on the facts given, we can reason that the optimal zone to place an ambulance 
is one in which it maximizes the population it can reach within 8 minutes. Since we 
have already come to the conclusion that one ambulance cannot effectively cover all 
zones in 8 minutes in our previous models, we examine the "location-population" 
diagram again to find out how many people an ambulance can cover when placed in 
each respective zone. The zone where the ambulance maximizes its coverage is the 
one where it is best placed in.  

	   Covered	  Zone	  &	  Location	   Total	  
Population	  Ambulance	   1	   2	   3	   4	   5	   6	  

No,1	   ※ 	   	   	   	   	   	   	  
270,000	  No.2	   	   	   	   	   ※ 	   	  
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We draw up the following diagram: 
 

 
Diagram 2 

 
As is shown in the diagram above, Zone 2 is the optimum choice of location when 
only one ambulance is available. 
 
However, although Zone 2 is already the best position, we are still unable to cover the 
whole county. Using the model below, we obtain the population left without 
coverage: 
 

Pu = Pt-P(2) 

= 270,000-160,000 
 
Thus we obtain the result that the uncovered population equals 110,000. 
 

5.2.5 Conclusion 

(1) When 3 ambulances are available, it is possible to cover everyone in the county 
within the 8-minute response range, which is also the maximum number of people 
who can be reached. The locations for the three ambulances have 22 different 
solutions listed as follows:  
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(1,2,5), (1,2,6), (1,3,4), (1,3,5), (1,3,6), (1,4,5), (1,4,6), (1,5,6), (2,3,4), 

(2,4,5), (2,4,6), (2,3,5), (2,5,6), (2,3,6), (1,5,5), (1,1,5), (1,6,6), (1,1,6), 

(2,5,5), (2,2,5), (2,6,6), (2,2,6) 
 
(2) After one ambulance has been set aside for an emergency call, leaving two 

ambulances available, we can still ensure that everyone be reached within the 8- 
minute window, the four locations being: 
 

(1,5), (1,6), (2,5), (2,6) 
 
(3) When two ambulances have both been dispatched, leaving only one ambulance 

available, the remaining ambulance should be posted at location 2, so as to 

maximize the number of people within the 8-minute reach. In this case, we can 
not cover everyone, and the population left without coverage accounts for 

110,000 
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5.3 Optimization 

5.3.1 Repeated Coverage 

When we look at the data given, we find that both ambulances stationed in Zone 1 and 
Zone 2 can effectively cover Zone 1 and Zone 2. The same occurs with ambulances 
stationed in Zone 2 and Zone 3, where both can effectively cover Zone 3, and so on. 
The overlaps in the model means that an afflicted area can have more than 1 
ambulance covering it, and in situations where more than 1 ambulance is needed, an 
effective back-up can be provided. Thus the higher the overlap rates between 
population coverage of the ambulances, the more fail-proof their combination. 
 
We used the following equation to determine an optimized plan: 
 

!!!!!!!!!!!
!!  = Rp 

 
Where P1, P2, and P3 represent respectively the population covered by the 3 
ambulances, Pt represents the total population of the whole county, and Rp represents 
the overlap rate of the coverage.We thus conclude that the higher the value of Rp, the 
more efficient the plan is. 
 
The results of this model are listed as below (Table 4 shows the 3-ambulance 
occasion while Table 5 represents the 2-ambulance occasion): 

Table 4 
 

Locations(3 ambulances) Overlap Rates of the Coverage 
(1, 2, 5) 59.3% 
(1, 2, 6) 59.3% 
(1, 3, 4) 18.5% 
(1, 3, 5) 31.5% 
(1, 3, 6) 31.5% 
(1, 4, 5) 38.9% 
(1, 4, 6) 38.9% 
(1, 5, 6) 51.9% 
(2, 3, 4) 29.6% 
(2, 4, 5) 50.0% 
(2, 4, 6) 50.0% 
(2, 3, 5) 42.6% 
(2, 5, 6) 63.0% 
(2, 3, 6) 42.6% 



Team	  #4155	   	   page	  21	  of	  46	  
	  

Locations (2 ambulances) Overlap Rates of the Coverage 
(1, 5) 00.0% 
(1, 6) 00.0% 
(2, 5) 11.1% 
(2, 6) 11.1% 

Table 5 
 
By comparing the overlap rates of the coverage, and circling out the locations with the 
highest overlap rates, we come to the conclusion that the best locations are: 
 

3 ambulances – (2, 5, 6) 

2 ambulances – (2, 5) & (2, 6) 

 

5.3.2 Fastest Response 

We build a matrix, Matrix Shuju, which directly corresponds with Table 1 given in 
the Problem. Variables i, j, k which head their horizontal lines correspond with the 
horizontal lines in Table 1 in representing a zone number. The variable x, which heads 
its perpendicular line also represents a zone number. In effect, the matrix almost 
exactly resembles Table 1. 
 
We first enumerate possible combinations of i, j, k with each variable taking on a 
value from one to six. With each combination of i, j and k, we also enumerate x from 
1 to 6. Then we calculate the numerate values of Shuju(i,x), Shuju(j,x), and Shuju(k,x) 
and determine whether any on these are smaller than 8. 
If Shuju(A,B) is smaller than 8, then we can logically assume that an ambulance 
located in Zone A can reach Zone B in 8 minutes, which means effective coverage of 
Zone B is achieved. This means if one of Shuju(i,x), Shuju(j,x) and Shuju(k,x) has a 
value smaller than 8, than the area x is successfully covered with combination i, j and 
k. 
 
Assume that we station 3 ambulances in Zones i, j and k. From the aforementioned 
Matrix shuju we can get the data about how fast each zone can be reached. 
 
We can infer that for Zone X, the smallest value amongst shuju(i,x), shuju(j,x) and 
shuju(k,x) represents the least time possible it takes to reach Zone X when the 
ambulances are stationed in Zone i, j and k. We deem this value t(x). 
 
If we add up the data of all 6 zones and divide the sum by 6, we get an average 
number. Comparing this average time of each i, j and k combination can give us an 
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optimized plan of the basic model: the smaller the sum, the less time it takes to reach 
the affected population, and therefore the more efficient the plan is. 
 
So we come to the following equation: 
 

Tijk=[t(1)+t(2)+t(3)+t(4)+t(5)+t(6)]/6 
 
Where Tijk represents the average time needed to reach each zone when the 
ambulances are stationed in particular zones (i, j, k). By comparing the values of all T 
and selecting the smallest, we get an optimized plan with time efficiency in 
consideration. 
 

 
Diagram 3 

 
The above diagram shows the average response time of each location when 3 
ambulances are available.  
 
Thus we can easily observe that in terms of response time, the most efficient locations 
are: 

(1, 2, 5)  (1, 2, 6) 
 
Meanwhile, supposing that the response time is the same, we should bear in mind that 
the standard deviation of the shortest time it takes to reach each Zone must be small. 
Since a smaller standard deviation means that the ambulances can reach all Zones 
relatively quickly, rather than spending a lot of time getting to some locations while 
reaching other locations in no time. 
 
We use these equations to calculate the standard deviations: 
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Square Deviation: 

s2=(!!!!)!!(!!!!)!!⋯(!!!!)!

!!!
 

 
Where x represents the average. 
 
Standard Deviation: 
 

s = 𝑠!=[ 𝑥1−𝑥
2+ 𝑥2−𝑥

2+⋯ 𝑥𝑛−𝑥 2

𝑛−1 ]
!
!

  
 
Since the standard division is the same for the 2 solutions, they are both optimum 
solutions for the question. 
 
In terms of 2 ambulances, the problem solving procedure is similar. Assume that 2 
ambulances are stationed in Zones i and j. Apply it to the shuju matrix shown above, 
we arrive at the model as below: 
 

Tij=[t(1)+t(2)+t(3)+t(4)+t(5)+t(6)]/6 

 
And then we developed the following Table 6: 
 

Location	   (1,5)	   (1,6)	   (2,5)	   (2,6)	  

Average	  Time	   3.833	   3.833	   3.833	   3.833	  

Table 6 
 
From the above table, we can see that when 2 ambulances are available, all the four 
locations have the same average response time.  
 
Thus all four are optimum solutions: 

(1, 5)  (1, 6)  (2, 5)  (2, 6) 

 
As with plans involving 3 ambulances, we also calculated the standard deviation of 
these 4 solutions and, finding them to be the same, decides that all four are optimum 
solutions. 
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6. Model II – Catastrophic Condition 

Catastrophic condition stands as an extreme out of the Standard Condition. When a 
catastrophe occurs, which mainly includes natural disasters such as earthquakes, 
tsunami, and infectious diseases, usually more population and wider areas are 
involved, which means a much more intensive need for emergency medical response 
of ambulances than under the Standard Condition is expected.  
 
In this case, the placement and dispatch mechanism of ambulances needs 
readjustment and more factors should be taken into consideration. 
 

6.1 General Model 

In a catastrophic situation in which a massive population has been affected, the 
symptoms of distress may break out all at once in all parts of the county and among 
all the population, or they might spring up from a central spot and proceed to spread 
throughout the area, or perhaps they just start cropping up in random places 
sporadically. 
 

6.1.1 Overlap Coverage 

As we have mentioned earlier on, in several ambulance arrangements the population 
coverage of the ambulances overlap with one another. This overlap becomes 
extremely useful in a catastrophic situation where victims appear sporadically and in 
random places.  
 
Since no general outbreak is expected, the ambulances will be alert on standby. Once 
one of the three responds to a call and goes into action, the other two will hopefully 
still maintain effective coverage of the whole county, so that they can also give 
immediate response once another case erupts in a different place.  
 
In this case, the solutions we give above for the optimized model of repeated coverage 
is also the optimum solution for this type of catastrophic situation. 
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6.1.2 Come-and-Go  

Another way to cover the situation is by the repeated dispatching and returning, i.e. 
coming back and forth, of the three ambulances so as to accommodate the need of as 
many people as possible. 
 
Referring to Table 3, by adding up the average traveling time accordingly, we 
establish the following table, showing the average time needed traveling back and 
forth for once between two zones: 
 
Zones/Average 
Traveling time 

(min) 

1 2 3 4 5 6 

1 2 16 24 30 28 28 
2  2 24 30 28 28 
3   3 14 12 8 
4    2 14 14 
5     4 4 
6      4 

Table 7-1 
 
Since we are required to respond within 8 minutes of all emergency calls, any solution 
with an average traveling time of over 8 minutes is not effective. We replace those 
solutions with the sign “∞” to give a more explicit illustration. 
 
Zones/Average 
Traveling time 

(min) 

1 2 3 4 5 6 

1 2 ∞ ∞ ∞ ∞ ∞ 
2  2 ∞ ∞ ∞ ∞ 
3   3 ∞ ∞ 8 
4    2 ∞ ∞ 
5     4 4 
6      4 

Table 7-2 
 
By analyzing Table 7-2, we listed all the possible come-and –go routes and the other 
zones that can be covered after the ambulance return from each route accordingly. 
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Possible Route (Zone⇌Zone) Supplementary Coverage (Zone) 
1⇌1 N/A 
2⇌2 3 
3⇌3 3 
4⇌4 6 
5⇌5 3 
6⇌6 4 or 6 
3⇌6 3 or 5 
5⇌6 (when originally located in 5) 4 

(when originally located in 6) 3 
Table 7-3 

 
Using the aforementioned traversing tree model, we search for the solutions that can 
cover all 6 zones within the effective response time (in our case the given 8 minutes). 
We conclude that it is impossible to cover all zones in the come-and –go situation 
with 3 ambulances. 

 

6.1.3 Three Ambulances Coverage 

In case of extreme catastrophic situation where massive destruction erupts all over the 
county, we need to get all 3 ambulances on spot as soon as possible. More than that, 
we had better make sure that an ambulance, when stationed in an appointed area and 
travelling along an appointed path, can go through all 6 Zones within 8 minutes to 
constructively boost rescue chances. 
 
	   Average	  Travel	  Times	  (min.)	  

Zones	   1	   2	   3	   4	   5	   6	  

1	   1	   8	   ∞	   ∞	   ∞	   ∞	  

2	   8	   1	   6	   ∞	   ∞	   ∞	  

3	   ∞	   ∞	   1.5	   ∞	   6	   4	  

4	   ∞	   ∞	   4	   1	   ∞	   8	  

5	   ∞	   ∞	   6	   4	   2	   2	  

6	   ∞	   ∞	   4	   6	   2	   2	  

Table 8-1 
Table 8-1 showcases the average time to commute between Zones. For the sake of 
clear illustration we have replaced all time more than 8 minutes with the infinity sign 
∞,	  and	  these are expelled from consideration because of their evident ineffectiveness. 
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Location	   Route	  Plan	   Time	   Total	  Time	  

1	   1→2	   8	   8	  

2	   2→1	   8	   8	  

2→3	   6	   6	  

3	   3→5→6	   6+2	   8	  

3→6→5	   4+2	   6	  

4	   4→6	   8	   8	  

4→3→6	   4+4	   8	  

5	   5→4→3	   4+4	   8	  

5→3	   6	   6	  

5→6→4	   2+6	   8	  

5→6→3	   2+4	   6	  

6	   6→3	   4	   4	  

6→4	   6	   6	  

6→5→3	   2+6	   8	  

6→5→4	   2+4	   6	  

Table 8-2 
In Table 8-2 we list all routes between Zones that can be completed in 8 minutes. 
These chunks of route plans allow us to get a clearer picture about how to effectively 
plan an overall course for the ambulances, so that they can traverse through all Zones 
within 8 minutes. 
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Ambulance Route Plan Average Time 

1,2,5 1→2,2→3,5→6→4 7.33 

1,2,6 1→2,2→3,6→5→4 6.66 

1,3,4 

1→2,3→5→6,6→4 7.33 

1→2,3→6→5,6→4 6.66 

1→2,3→5→6,6→5→4 7.33 

1→2,3→6→5,6→5→4 6.66 

1,3,5 

1→2,3→5→6,5→4→3 8.00 

1→2,3→6→5,5→4→3 7.33 

1→2,3→5→6,5→6→4 8.00 

1→2,3→6→5,5→6→4 7.33 

1,3,6 

1→2,3→5→6,6→4 7.33 

1→2,3→6→5,6→4 6.66 

1→2,3→5→6,6→5→4 7.33 

1→2,3→6→5,6→5→4 6.66 

1,4,5 

1→2,4→6,5→4→3 8.00 

1→2,4→6,5→3 7.33 

1→2,4→6,5→6→3 7.33 

1→2,4→3→6,5→6→4 8.00 

1→2,4→3→6,5→6→3 7.33 

1→2,4→3→6,5→3 7.33 

1→2,4→3→6,5→4→3 8.00 

1,4,6 

1→2,4→6,6→5→3 8.00 

1→2,4→3→6,6→5→3 8.00 

1→2,4→3→6,6→5→4 7.33 

2,3,4 

2→1,3→5→6,4→6 8.00 

2→1,3→5→6,4→3→6 8.00 

2→1,3→6→5,4→6 7.33 

2→1,3→6→5,4→3→6 7.33 

2,3,5 

2→1,3→5→6,5→4→3 8.00 

2→1,3→5→6,5→6→4 8.00 

2→1,3→6→5,5→4→3 7.33 

2→1,3→6→5,5→6→4 7.33 

2,3,6 

2→1,3→5→6,6→4 7.33 

2→1,3→5→6,6→5→4 7.33 

2→1,3→6→5,6→4 6.66 

2→1,3→6→5,6→5→4 6.66 
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2,4,5 

2→1,4→6,5→4→3 8.00 

2→1,4→6,5→6→3 7.33 

2→1,4→6,5→3 7.33 

2→1,4→3→6,5→4→3 8.00 

2→1,4→3→6,5→3 7.33 

2→1,4→3→6,5→6→4 8.00 

2→1,4→3→6,5→6→3 7.33 

2,4,6 

2→1,4→6,6→5→3 8.00 

2→1,4→3→6,6→5→3 8.00 

2→1,4→3→6,6→5→4 7.33 

2,5,6 

2→1,5→4→3,6→3 6.66 

2→1,5→4→3,6→4 7.33 

2→1,5→4→3,6→5→3 8.00 

2→1,5→4→3,6→5→4 7.33 

2→1,5→3,6→4 6.66 

2→1,5→3,6→5→4 6.66 

2→1,5→6→4,6→3 6.00 

2→1,5→6→4,6→5→3 8.00 

2→1,5→6→3,6→4 6.66 

2→1,5→6→3,6→5→4 6.66 

Table 8-3 
 
This final graph, Table 8-3, is our final response to the problem. On the left side we 
list the probable solutions, where the ambulances can be stationed, to be exact, while 
in the middle we draw out the respective paths that these ambulances can trace in an 
emergency so that they can course through all 6 zones within 8 minutes. On the right 
side we give the corresponding time to each path plan. The optimum plan for any 
catastrophic occurrence can therefore be determined using this graph despite their 
geographical differences. 
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6.2 Intensity Distribution 

As for the most extreme catastrophic condition, where the three ambulances are all 
obliged to be dispatched at the same time, we need to place and dispatch the 
ambulances according to the influence intensity so as to build up the most effective 
and efficient ambulance response system. 
 
Since spreading patterns and intensity difference vary according to the types of the 
disasters, we break down the discussion into two respective conditions.  
 

6.2.1 Radiation Model 

The radiation model applies to disasters that spread its impact in a radiation way, 
which means the center of the occurrence has the most casualty rates and therefore 
needs the most ambulances, while the intensity of other areas decrease progressively. 
 
The most typical case in the radiation model is earthquakes, thus we hereby take 
earthquakes as an example to establish the model. 
 
Disregarding factors like road planning, we assume that the time it takes to travel 
between two Zones is directly proportional to the distance between them. 
 
Suppose an earthquake happens in Zone 1, and the distance from Zone 1 to another 
arbitrary Zone (for the sake of the hypothesis we will use Zone 2 as an example) is d. 
The distance from Zone 1 to the other 4 Zones becomes accordingly K1d, K2d, K3d 
and K4d. 
 
In comes the Richter Magnitude Scale. 
 
The Richter magnitude of an earthquake is determined from the logarithm of 
the amplitude of shock waves recorded by seismographs.  
 
The original formula is: 
 

ML = log10 A – log10 A0(𝛿) =log10 [A/A0(𝛿)], (1) 

 
Where A is the maximum excursion of the Wood-Anderson seismograph, the 
empirical function A0 depends only on the epicentral distance of the station 𝛿, and ML 
stands for the Local Magnitude. 
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Using this equation we come to the following results: 
 

M1 = log A 

M2 = log A – log A0 (d) 
 
While for the other 4 Zones we have: 

 
The constant A, which needs inputting, is the magnitude of the earthquake at the 
epicenter. Since the logA0 (d) in all Mk equations are equal in value, the earthquake 
magnitude in different Zones can be thought of as a ratio between 2 constants minus 
different known numbers. 
 
The second equation we consult deals with the earthquakes’ shaking intensity and 
their corresponding fatality rates. This is the Empirical Fatality Rate Equation 
developed by Jaiswal et al (2009), a new global empirical model where the fatality 
rate (v), which is the function of shaking intensity (S), can be expressed in terms 
of a two-parameter lognormal distribution function as follows: 
 

v(S) =Φ[!
!

ln(!
!
)] (2) 

 
Where Φ is the standard normal cumulative distribution function. The fatality rate dep
ends on the two free   parameters of the cumulative distribution function of the logno
rmal distribution namely, θ and β. 
 
Because most parameters involved are constants, the ratio of fatality rate between 
different zones can be conversed into ratios of their respective (lnS-lnθ), where S 
represents the intensity of the earthquake. 	  
	  

Suppose all factors beyond the shaking intensity remains constant all over the county, 
then the ratio between the shaking intensity is the ratio between the magnitudes. 
 
This means that if the earthquake magnitude in Zone A is k times the magnitude in 
Zone B, the fatality rate in Zone A is larger than that of Zone B by lnk. 
 
After we figure out the ratio of fatality rates, i.e. the ratio of v, we can use Model 3 to 
determine the fatality rates in each Zone. 
 

Ei[L]≈ 𝑣! i (Sj) Pi (Sj) (3) 

 



Team	  #4155	   	   page	  32	  of	  46	  
	  

Where Pi(Sj) denotes an estimated population exposed to shaking intensity Sj for an 
event i. Then the expected number of fatalities E[L] can be denoted as the above. 
 
From all the points above we can come to the conclusion that the nearer a place is to 
the epicenter, the higher the casualty rate, which is to say that the nearer a place is to 
the center of the earthquake, the higher its demand for ambulances. The optimum 
solution in this case is one that can get the ambulances to our affected areas as fast as 
possible. 
 
Remember the Fastest Response section we did on our optimization plans? Now we 
can go back and use that model again. 
 
Returning to Matrix shuju, we can infer that for Zone X, the smallest value amongst 
shuju(i,x), shuju(j,x) and shuju(k,x) represents the least time possible it takes to reach 
Zone X when the ambulances are stationed in Zone i, j and k. We deem this value t(x). 
 
For each combination of i, j and k, we calculate their respective t(1), t(2) , t(3), t(4), 
t(5) and t(6). The combination that can get to X in the shortest time is the solution that 
we are looking for. 
 
Thus we arrive at the solutions as follows: 
 

Occurrence	  Location	   Ambulance	  Location	  

1	   1,2,6(1,2,3)	  

2	   2,3,6(2,3,6)	  

3	   1,3,5;1,3,6(3,6,5)	  

4	   1,3,4(4,3,6)	  

5	   5,4,1(5,6,3)	  

6	   6,4,1(6,5,4)	  

Table 9 
 

In Table 8, solutions without “()” are the optimum solutions which can arrive the 
fastest at the Zones in the most need of help, while ensuring a whole-county coverage; 
those solutions with “()” are the solutions which only achieve the fastest reach to the 
major disaster area, however without covering the whole county. 
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6.3.2 Epidemic Model 

Define x(t) as a continuous and differentiable function, representing the number of 
affected people at a certain time t. Assume that the disease transmission begins 
immediately. 
 
Use λ to represent the average effective contact per person (the number of people 
infected through contacts). 
 
To examine the increase of patient number between t to t+∆t, we establish the 
following model:	  
	  

x(t+∆t)-x(t)=𝜆x(t)∆t 

 

⟹ !(!!∆!)!!(!)
∆!

=  𝜆x(t)	  (1)	  
	  

If t=0, let the number of patients be x0. When ∆t →0, we come to the following 
differential equation:	  
	  

!"
!"
= 𝜆𝑥

𝑥 0 = 𝑥!
	   	  

	  

⟹ x(t)=x0𝑒!" 	   (2)	  
	  

According to the above model, x(t) keeps increasing to an infinite degree, which is not 
possible in reality. Notice that only healthy people can be taken into the susceptible 
pool, and the number of healthy people is in a process of gradual declining. Thus we 
modify the above model. 
 
Divide the whole population into two groups, namely the susceptible and the infected. 
Let the number of the whole population be N, and the ratio of the susceptible 
population number to N and the infected population number to N at certain time be s(t) 
and i(t). 
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The number of healthy people infected by each infected person should thus be: λs(t); 
and the total number of newly infected healthy people each day would be: λNs(t)i(t). 
Thus we come to the modified model as follow:	  
	  

𝑁
𝑑𝑖
𝑑𝑡 = 𝜆𝑁𝑠 𝑡 𝑖(𝑡)

𝑠 𝑡 + 𝑖 𝑡 = 1
𝑖 0 = 𝑖!

 

 

⟹ 
!"
!"
= 𝜆𝑖 𝑡 [1 − 𝑖 𝑡 ]
𝑖 0 = 𝑖!

 

 

⟹    i(t) = 
!

!!( !!!
!!)!!!"

	   (3)	  

	  

When i = 0.5,	  
!"
!"
	   reaches its maximum, and  

tm=𝜆-1ln(!
!!
− 1) (4) 

 
This is when the increase of infected people is at its peak. Local hospitals and the 
government should be paying special attention at this point! 
 
𝜆 indicates the sanitary condition of the county. Since tm is inversely proportional to 
𝜆 , the lower 𝜆  is, the better the sanitary condition is. Improving the sanitary 
condition can serve to postpone the peak of infection. 
 
Notice that in the above Model 4, when t→ ∞, i→1, which means the whole county is 
to be infected. This is very unlikely to happen in reality. In order to make the model 
more practical, we take the recovered population into consideration, and come to the 
following adaptation: 
 
Assume the recovered people accounts for 𝜇 of the total infected population, where 
𝜇 is a constant. The recovered people is eligible to second-time infection afterwards. 
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Thus the average transmission period of this type of disease is 
!
!
. 

The modified model is as follows: 
 

𝑁
𝑑𝑖
𝑑𝑡 = 𝜆𝑁𝑠 𝑡 𝑖 𝑡 − 𝜇𝑁𝑖(𝑡)

𝑠 𝑡 + 𝑖 𝑡 = 1
𝑖 0 = 𝑖!

 

 

⟹ 
!"
!"
= 𝜆𝑖 𝑡 1 − 𝑖 𝑡 − 𝜇𝑖(𝑡)

𝑖 0 = 𝑖!
 

 

⟹ i(t) = 
[ !
!!!

+ !
!!
− !

!!!
𝑒! !!! ]!!          𝜆 ≠ 𝜇

(𝜆𝑡 + !
!!
)!!                                                                            𝜆 = 𝜇

 (5) 

 
Let 𝜎 = 𝜆/𝜇, thus 𝜎 represents the average number of effective contacts of each 
infected person within one infection period. 
 
Model 5 can thus be modified as follows: 
 

!"
!"
= −𝜆𝑖 𝑡 [𝑖 𝑡 − 1 − !

!
] (6) 

 
Contact number 𝜎 is a domain value. When 𝜎 >1, the increase and decrease of i(t) 

depends on the value of i0, but its limit i(∞)=1-!
!
 increases if 𝜎 increases; if 𝜎 ≤ 1 

then i(t), the ratio of the infected, decreases and gets closer to zero. This explains why 
during an epidemic the number of people infected can never exceed the number of 
original patients. 
 
Most epidemic diseases like smallpox, influenza, hepatitis and measles make the 
patient immune to them once he or she has recovered from it. The recovered patients 
are therefore neither healthy nor infected. They are, in effect, totally separated from 
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the whole system. This brings more complications, as we will discuss in the following 
paragraphs. 
 
Assume that while the disease is spreading, the total population in the given area 
remains stable. Neither births and deaths nor immigration and emigration are taken 
into account. We categorize the population into those who are healthy, those who are 
infected, and those who have successfully recovered from and thus will remain 
immune to the disease. Deem their respective portion in the total population as s(t), 
i(t), and r(t); daily contact rate of the infected will be constant 𝜆, daily recovery rate  
𝜇, and 𝜎 = 𝜆/𝜇 the contact number during the epidemic. 
 
From the assumption we induce that s(t)+i(t)+r(t)=1. For the number those who have 
successfully recovered we can use the following equation: 
 

N !"
!"

 =𝜇Ni(t)  (7) 

 
Deem the initial ratio of the healthy population and the infected population as s0 and i0 

respectively, and the initial number of recovered patients r0=0. We thus can get the 
following differential equation: 
 

!"
!"
= 𝜆𝑠 𝑡 𝑖 𝑡 − 𝜇𝑖 𝑡 , 𝑖 0 =    𝑖!
!"
!"
= −𝜆𝑠 𝑡 𝑖 𝑡 , 𝑠 0 = 𝑠!

  (8) 

 
The above equation is what we will center our model on. Because we cannot 
determine the analytic solutions of s(t) and i(t), we can only use numerical evaluations, 
although that can be remedied in practice by employing mathematic software, or we 
can analyze the relationship between s and t in an s-t plane. 
 
In this model, 𝜎 = 𝜆/𝜇 should be recognized as a very important parameter. Since 
the equation has no analytic solutions, the values of both 𝜆  and 𝜇 are hard to 
estimate. However after an epidemic outbreak we can gather the value of s0 and s∞ 
to calculate 𝜎 with this model: 
 

𝜎 = !"!!!!"!!
!!!!!

  (9) 
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When similar epidemics hit again, presuming that 𝜆  and 𝜇 does not go through too 
much change, we can use this value of 𝜎 to determine the process of the epidemic 
transmission. 
 
With the above models, we establish the following diagram. 
 

 

Diagram 4 
 
Using the models above, we conclude that the optimum solution under this 
circumstances is 
 

(1, 2, 5) 
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7. Analysis and Application 

7.1 Model Analysis 

7.1.1 Strengths Analysis 

Using our basic models and all factor models, we can generate several solutions about 
where to station ambulances in different scenarios. Since our models cover both 
standard and catastrophic occurrences, and expand on several specific cases in the 
catastrophic categories, it is reasonable to conclude that they are both comprehensive 
and adequately effective. All our answers are products of careful analysis and 
induction: some of the answers, in fact, are produced by using different models on the 
same questions, therefore they are trustworthy and fault-proof. 
 
Not only are they reliable, the models also present room for further elaboration, in 
that they can also be applied to counties and cities in a broader sense, and are not 
limited only to the questions dealt with in the problems. Several models have been 
optimized a number of times, and the calculation processes involved are as simple and 
direct as we can make them. 
 

7.1.2 Improvement Analysis 

However, as with all models, we did not forget that important assumptions have been 
made during the building of those models, especially with the standard models 
concerning Question 1,2&3, where the condition is "semi-perfect". Sifting carefully 
through the whole emergency response mechanism, we can see that there are still 
many variables and uncertainties left out of consideration, and, in fact, cannot 
possibly be added into calculation since they are so varied and erratic.  
 
We still have our minds on, for example, the call taking time, the delays that might 
occur in dispatching processes, the time period between the dispatching of the crew 
and the start of the vehicle, the health and capability of the crew members, whether 
extreme road and weather conditions are present, or whether government policies 
change in times to crisis...and the list goes on. These, however, we recognize to be the 
icing on the cake. Due to time limits, these variables had to be left out in the modeling 
process, though we plan to expand on them in the future. 
 

 



Team	  #4155	   	   page	  39	  of	  46	  
	  

7.2 Application 

We build a final model that can be utilized in any scenario where 3 ambulances are on 
standby. Once we insert our figures about the time it takes to commute between all 
zones into a matrix, an instant optimum result of where to station the 3 ambulances 
can be obtained. In this optimized version of Model 1, the variable of h(x) can also be 
self-defined, which means that the Zone number does not necessarily needs to be 6. 
The model therefore, is not solely applicable to this county, but can also be used with 
any other region, with however many Zones involved depending on the actual 
situation. 
 
We deem h(x) as a logic discriminant array consisting of six numbers，with its the 
initial value being 1.  
 
If Zone X can be covered by the combination of i,j and k, then we multiply h(x) by 1, 
so h(x) remains 1. If Zone X cannot be covered by this combination then we multiply 
h(x) by 0, so h(x) becomes 0.  
 
We deem s as : 
 

s=h(1)*h(2)*h(3)*h(4)*h(5)*h(6)*……*h(x) 

 
If all values from h(1) to h(x) are 1, then s=1, in which case we conclude that the 
combination of locating ambulances in Zones i, j, and k can reach all x zones. If one 
of the values is 0, then s=0, which means that the combination cannot reach all x 
zones. This combination is therefore not an effective solution and subsequently then 
discarded. 
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8. Recommendation Memo 

Dear Sir/Madam: 
 
Looking over the data concerning ambulance distribution and emergency control in 
your county, we realize that a more effective short-range mechanism to combat 
regional crisis is needed. We believe that better situated ambulance stations can help 
maximize the number of residents that can be reached after emergency calls, and 
having built several mathematic models that helped us gain fair conceptions as to how 
to improve arrangements, we put the following information and advice at your 
disposal: 
 
Under normal conditions, we propose the following two ways of arranging your three 
ambulances so as to maximize the population they can reach in 8 minutes: 
 
Plan One 
If you prefer the most fail-proof arrangement, which means you can cover all the 
population in your county at all times to the highest degree, then plan 1 is what you 
would be looking for. The detailed station plan is as follows: 
1. When all the 3 ambulances are available, station them at (2, 5, 6). Thus you can 

cover all the zones of your county, and the overlap coverage rate (OCR) in terms 
of the population is 63%, which means 63% of the people in your county have 
more than 1 ambulance that can reach them within 8 minutes. 

2. When 1 ambulance has already been dispatched, and there are 2 ambulances 
available, place them at (2, 5) or (2, 6). All zones are covered with both location 
arrangements offer the OCR of 11%. (This also means that the first ambulance to 
be dispatched should be the one stations at 5 or 6.) 

3. When 2 ambulances have been dispatched, and only 1 ambulance is left available, 
unfortunately, it is impossible to cover all the zones. However, the best location 
for the last ambulance is 2, with 160,000 people within the 8-minute reach. 

 
Plan Two 
If you regard the response speed or efficiency as priority, then you might want to 
consider Plan Two. The detailed station plan is as follows: 
1. When all the 3 ambulances are available, station them at (1, 2, 5) or (1, 2, 6), since 

these two arrangements have the shortest average respond time among all the 
arrangements that are able to cover the whole county. 

2. When 1 ambulance has already been dispatched, and there are 2 ambulances 
available, place them at (1, 5), (1, 6), (2, 5) or (2, 6). They all have the shortest 
average respond time among all the arrangements that are able to cover the whole 
county. 

3. When 2 ambulances have been dispatched, and only 1 ambulance is left available, 
the situation is the same with Plan One, the best location is 2, and 160,000 people 
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are within the 8-minute reach. 
 
In other rare cases, such as when a catastrophe occurs, we have developed another set 
of models to design the optimum arrangement of the three ambulances. However, 
since the situation varies according to different types of diseases and different major 
disaster locations, we are unable to list all of the possible arrangements here. You are 
welcomed to contact us at any time for more information if you are interested. 
 
The model we used to gather all these data is a scientifically sound and logically 
refined one, built out of detailed analysis and careful observation. 
 
Through our proposal, we hope to increase the outreach of the ambulances, strengthen 
their coordination, and accelerate the process from receiving emergency calls to 
giving fast and appropriate responses. If these can be achieved then the capacity of 
rescue missions can be increased, and rescue approaches will be more tailored to the 
specific needs of the local population. 
 
We also suggest you consider other measures to boost your emergency response 
mechanism. We strongly recommend you invest more capital in the whole system and 
upgrade your ambulance arrangement by keeping more standby vehicles on hand so 
as to ensure effective coverage of the whole county. 
 
For more extensive optimizations, we also suggest engrafting more strategically 
planned capital-intensive infrastructure such as smart grids and traffic networks on a 
regional basis. Perhaps large-scale emergency drills can be put into practice so that 
local communities are involved early in planning and all details are taken into 
consideration at the designing stage. 
 
It is our sincere hope that our models can be of good reference. Thank you for your 
attention. 
 
Best regards. 
 
 
 
Sincerely, 
HIMCM Team #4155 
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9.2  Matlab Code 

（1） 
#dijkstra# 
clear; 
M=10000; 
a(1,:)=[2,16,18,4,12,2]; 
a(2,:)=[zeros(1,1),1,8,12,14,10]; 
a(3,:)=[zeros(1,2),1,6,18,16]; 
a(4,:)=[zeros(1,3),1.5,12,6]; 
a(5,:)=[zeros(1,4),1,6]; 
a(6,:)=[zeros(1,5),2]; 
a=a+a'; 
pb(1:length(a))=0;pb(1)=1; 
index1=1; 
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index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0; 
temp=1; 
while sum(pb)<length(a) 
   tb=find(pb==0);= 
   d(tb)=min(d(tb),d(temp)+a(temp,tb)); 
   tmpb=find(d(tb)==min(d(tb))); 
   temp=tb(tmpb(1)); 
   pb(temp)=1; 
   index1=[index1,temp]; 
   index=index1(find(d(index1)==d(temp)-a(temp,index1))); 
   if length(index)>=2 
      index=index(1); 
   end 
   index2(temp)=index; 
end 
d, index1, index2  
 
 
（2） 
h=zeros(1,6); 
data=[1,8,12,14,10,12;8,1,6,16,12,10;12,18,1.5,10,6,4;16,14,4,1,10,8;18,16,6,4,2,2;16
,18,4,6,2,2]; 
for i=1:1:6  
    for j=1:1:6 
        for k=1:1:6 
          for x=1:1:6  
            if data(i,x)<=8 || data(j,x)<=8 || data(k,x)<=8 
               h(x)=h(x)*1; 
            else h(x)=h(x)*0; 
            end 
          end 
          s=h(1)*h(2)*h(3)*h(4)*h(5)*h(6); 
          if s==1 && i~=j && j~=k && i~=k 
                i; 
                j; 
                k; 
                s=0; 
                su=su+1; 
          end 
          h=ones(1,x); 
         end 
     end 
end 
su   
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（3） 
#fast response# 
i=1; 
sum=0; 
min=zeros(1,6); 
data=[1,8,12,14,10,12;8,1,6,16,12,10;12,18,1.5,10,6,4;16,14,4,1,10,8;18,16,6,4,2,2;16
,18,4,6,2,2]; 
a=input('ambulance1='); 
b=input('ambulance2='); 
c=input('ambulance3='); 
for i=1:1:6 
    if data(a,i)<=data(b,i)  
        min(i)=data(a,i); 
    else min(i)=data(b,i); 
        if min(i)>data(c,i) 
            min(i)=data(c,i); 
        end 
    end 
end 
min 
for i=1:1:6 
    sum=min(i)+sum; 
end 
aver=sum/6 
 
 
（4） 
#ill# 
function y=ill(t,x) 
a=1; 
b=0.3; 
y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)]; 
 
[t,x]=ode45('ill',ts,x0); 
plot(t,x(:,1),t,x(:,2)), grid,pause 
plot(x(:,2),x(:,1)),grid on; 
end 
（5） 
# ambulance situation# 
function ambulance 
for i=1:1:x  
    for j=1:1:x 
        for k=1:1:x 
          for x=1:1:x  
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            if shuju(i,x)<=8 || shuju(j,x)<=8 || shuju(k,x)<=8 
               h(x)=h(x)*1; 
            else h(x)=h(x)*0; 
            end 
          end 
          s=h(1)*h(2)*h(3)*h(4)*h(5)*h(6); 
          if s==1 && i~=j && j~=k && i~=k 
                i; 
                j; 
                k; 
                s=0; 
                su=su+1; 
          end 
          h=ones(1,x); 
         end 
     end 
end 
su   
 
 
（6） 
#8 minutes# 
clear; 
M=10000; 
a(1,:)=[1,8,M,M,M,M]; 
a(2,:)=[8,1,6,M,M,M]; 
a(3,:)=[M,M,1.5,M,6,4]; 
a(4,:)=[M,M,4,1,M,8]; 
a(5,:)=[M,M,6,4,2,2]; 
a(6,:)=[M,M,4,6,2,2]; 
a=a+a'; 
pb(1:length(a))=0;pb(1)=1; 
index1=1; 
index2=ones(1,length(a)); 
d(1:length(a))=M;d(1)=0; 
temp=1; 
while sum(pb)<length(a) 
   tb=find(pb==0); 
   d(tb)=min(d(tb),d(temp)+a(temp,tb)); 
   tmpb=find(d(tb)==min(d(tb))); 
   temp=tb(tmpb(1)); 
   pb(temp)=1; 
   index1=[index1,temp]; 
   index=index1(find(d(index1)==d(temp)-a(temp,index1))); 
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   if length(index)>=2 
      index=index(1); 
   end 
   index2(temp)=index; 
end 
d, index1, index2  
  
 
（7） 
#Floyd# 
D=A; 
n=length(D); 
for i=1:n  
    for j=1:n    
        R(i,j)=i;     

end  
end  
for k=1:n  
     for i=1:n  
        for j=1:n   
            if D(i,k)+D(k,j)<D(i,j)  
                D(i,j)=D(i,k)+D(k,j);  
               R(i,j)=R(k,j); 
            End 
         End 
     End 
     hl=0; 
     for i=1:n  
        if D(i,i)<0 
            hl=1;  
           break; 
         end 
     end  
    if(hl==1)  
        fprintf('minus')  
        break;     
end 
end	  


