
In a theoretical bank, a manager wishes to improve service and wants the average customer to wait less than 2
minutes for service and the average length of the waiting line to be 2 persons or fewer. Our model was designed to
simulate the current conditions of the bank and to determine to what degree the service should be improved to meet
the required conditions if the current services were ineffective. !
We decided to model this problem using a computer program written in Java that would simulate, using a loop, an
actual bank day in which 150 customers entered the bank and were processed. Then, we determined how many
people were in line and stored the values in an array for later access; we also calculated the time that each person
waited and stored those values into an array. However, the calculations were rather complex so instead of making a
queue in a computer program, we stored each customer’s arrival time, waiting time and leaving time as elements of
arrays because we discarded the customer at the end of each loop. However, we were surprised at the data
generated; in fact, so much so that we created another program that used altered logic with the same probabilities to
confirm the results. After ten runs, results were consistent with our original model. Therefore, confident of the
legitimacy of our results, we began to brainstorm ways to improve service. !
However, we encountered a problem that forced us to optimize the bank service in two different manners, not one.
The problem was that we were uncertain whether the manager wanted every “average customer” to wait less than 2
minutes for service, a requirement that would be theoretically impossible, or whether the manager wanted each
customer to have an average wait time of less than 2 minutes for service, a requirement that could be more easily
optimized and practically implemented. Ultimately, we were able to brainstorm two solutions to each of these
conditions that would maintain reasonable burden on workers but provide a satisfying business-growing experience
to customers. The solution for the first interpretation optimized the bank service so that 90% of all average
customers wait in line for less than two minutes (35% two-minute service time and 65% one-minute service time).
The solution for the second interpretation optimized the bank service so that all customers wait in line for an
average of less than two minutes (40% three-minute service time, and in increase in two-minute service time by 5%
and one-minute service time by 10%). !

PROBLEM B COMAP 4093 PAGE ! OF 351

!
!

HiMCM 2013 Problem B
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

PROBLEM B COMAP 4093 PAGE ! OF 352

Table of Contents
HiMCM 2013 Problem B	 1

Table of Contents	 2

Introduction	 3

Restatement of the Problem	 3

Assumptions and Justifications	 4

Variables	 5

Independent Variables	 5

Dependent Variables	 5

Hypotheses	 6

Analysis of Problem and Contemplation of Various Modeling Methods	 7

Our Mathematical Model	 8

Optimizing Our Models	 10

Strengths and Weaknesses	 11

Conclusion	 14

Sensitivity Testing	 14

Extra questions:	 14

Non-technical Letter to the Manager	 15

Bibliography	 17

Appendices	 17

Appendix A. Program Code	 17

Main Method Program	 17

Method Class	 22

Appendix B. Program Flow Charts	 25

Appendix C. Third Program	 30

Appendix C. Average Bank Hours	 34

PROBLEM B COMAP 4093 PAGE ! OF 353

Introduction
	 In a service based industry such as the field of banking, customer satisfaction is always a
key concern when considering business efficiency. One of the leading complaints customers have
with banks is the waiting time. A customer looking to use a bank’s services usually wants to do
one of a few actions: withdraw money, deposit checks and cash, or change or open an account.
However, these processes take time that can add up, leaving the customers in the back of the line
wondering if they will be able to spare enough time from their busy day to use a bank. Thus, an
inefficient queuing system can cost the bank in lost opportunities, such as in transactions that do
not occur because a customer does not want to wait in line, or in lost customers who leave
because they feel that they can get better treatment at another bank. Therefore, both waiting
time and queue length must be considered when evaluating bank efficiency. Our overarching goal
for this model is to be able to effectively model bank users at a given model bank and optimize
this bank’s ability to serve customers well.

!
Restatement of the Problem
1. Build a mathematical model that ensures that the customers will wait no more than two

minutes for service and that no more than two people will be in each service queue. The
model will run for the estimated 150 customers per day and the probability of time between
arrival and service time will be represented by the data chart below.

2. Determine whether current customer service meets the manager’s aforementioned service
guidelines, and model the minimum changes needed so that servers can meet manager
guidelines if they do not already.

3. Write a non-technical letter to the manager concerning final recommendations.

!

!

Time between Arrival (minutes) Probability Service Time (minutes) Probability

0 0.10 1 0.25

1 0.15 2 0.20

2 0.10 3 0.40

3 0.35 4 0.15

4 0.25

5 0.05

PROBLEM B COMAP 4093 PAGE ! OF 354

Assumptions and Justifications
1. Banks are closed on Sundays.

1.1.Justification: Though most banks are closed on Sundays, some, such as the East West
Bank, are not. Assuming that all banks are closed on Sundays would allow us not to have
to work around a small minority of banks while still making our model fairly
representative of all banks. Thus, when we model the theoretical bank’s average opening
time per day, we base our assumption on a six day week.

2. The top three banks by assets in America (Chase, Bank of America, and Citibank) are
representative of all banks in America.

2.1.Justification: Since most other banks below the top three in America are investment banks
or credit card institutions, such an assumption would still be fairly accurate when applied
to the real world. In addition, the top three banks, in terms of assets, comprise a large
majority of the banking market.

3. There is only one queue in the bank.

3.1.Justification: Assuming that there is only one queue in the bank helps simplify our model,
thus reducing the complexity of results and number of variables in the model.
Furthermore, the assumption

4. There is only one teller in the bank.

4.1.Justification: Assuming that there is only one teller in the bank helps simplify our model
and is only logical if we were to assume that there is only one queue in the bank.

5. There are no exceptions, interruptions or other events that could interrupt the time between
arrival and service time of the bank during each simulation. The probabilities of each time
between arrival and service time stay constant.

5.1.Justification: Accounting for rare exceptions in the model is inefficient and difficult to
model.

6. There are only 150 customers who enter the bank per day.

6.1.Justification. The problem uses this assumption because there is no established algorithm
to determine a bank’s change in inflow of customers from day to day throughout the
week.

!
!
!
!

PROBLEM B COMAP 4093 PAGE ! OF 355

Variables
Independent Variables
Arrival Time Between Customers:
The arrival time between customers for our bank can be calculated by a pseudorandom number
generated within our code, determining what is the delay time between customers according the
probabilities in the problem’s table.

!
Service Time:
The service time that each customer uses is an independent variable because it is independent of
any other influence. In a real bank, customers utilize a number of services, such as depositing
cheques, withdrawing money, maintaining their account, creating new accounts, etc. Because the
different services that customers utilize require different amounts of time, it is impossible to
model them discretely and instead an average service time is used. The service time must remain
in a certain interval if the customers are not to wait for 2 minutes or more. For example, if two
customers came in at the same time, then the service time of the first customer must be less than
two minutes if the second customer is not to wait less than two minutes.

!
Time Elapsed Since Last Customer:
The time elapsed since the last customer is the time elapsed customer A walks in and Customer
B walks in. This matters because the service time of Customer A minus the time elapsed since
last customer equals the time that Customer B will have to wait in line.The time elapsed since last
customer is a random number generated in our model, since in real life the time between
customers is random and independent.

!
Timestamp:
The timestamp, or what time it is right now, is the input of the random number generator that
we use in our model that gets converted into wait time and queue length.

!
Dependent Variables
Wait time:
The time that each customer will have to wait in line. This equals the time that service takes for
customer A minus the time elapsed since last customer. In our model, we use timestamps in our
random number generator to generate time elapsed and service time, under certain parameters
to find the wait time. Our goal is to have the limit(wait time minus 2 minutes) to go to zero.

PROBLEM B COMAP 4093 PAGE ! OF 356

Line length:
The length of the line is based of service time and arrival time between customers. The line
length is based on wait time which is in turn dependent on time elapsed since last customer and
the service time.

!
Hypotheses
After modeling the current demands upon the branch, we have determined that the current
service platform will not allow the bank to meet its goals:

*Wait time less than two minutes for any customer: we have determined that, on an average day,
between 110 and 130 customers will have to wait in line for at least two minutes, assuming the
current service platform. The modeled average wait time for any given customer is about 7
minutes.

*Queue no longer than two persons at any time: we have determined that, on an average
operating day of 501 minutes, the line will be at least three people long for about 144 minutes
from the time the first customer enters to the time the last customer leaves, assuming the current
service platform. The modeled average line length at any given minute of the day is about 3
persons.

!
	 Growth will be limited until customers can be satisfied.

!
 With this in mind, we have found that the best way to optimize customer service is to increase
the speed at which customers are processed. Thus, we recommend worker training modules to
speed worker’s transaction capabilities. The bank should eliminate four-minute service times
(currently 15% of business) and transfer that 15% to three-minute service times, then eliminate
15% of three-minute service times and transfer that 15% to two-minute service times, and so
forth (essentially eliminating four-minute services and transferring the excess 15% up the service
ladder one step at a time until the mix of service times stood at 40% for one minute, 20% for
two, and 40% for three) through worker efficiency training.

Even then, however, more than a third of customers would wait for longer than two minutes and
the line would be longer than 2 persons for about an hour each day. Therefore, we recommend
achieving a final 65%/35% split between one minute and two minute service times. One
opportunity to achieve this might be to parallelize tasks: many banking customers walk into
branches seeking to service accounts and to withdraw or deposit money; however, account
servicing requires a platform banker, while balance modification requires a teller. In a traditional
branch, the customer would visit the teller first and then the banker, but the bank instead would

PROBLEM B COMAP 4093 PAGE ! OF 357

be able to save time by allowing the customer to fill out a balance slip when he entered (only if
there was a line), and then routing any customer with an account service request to the banker
first. The banker would submit the customer’s balance slip to the tellers if there was a line or, if
there was no line, simply perform the maintenance request and then send the customer to the
teller as usual. In this way, customers who only wished to deposit or withdraw would quickly be
able to do so if there were no line, but those with maintenance requests would be able to avoid
longer lines since their money would be deposited or withdrawn while they themselves discussed
their accounts with a banker.

!
Realistically, however, these changes will require ambitious efforts that will tax the bank and
might strain the bank’s workers. Instead, it might consider hiring one more teller to process quick
requests and one more banker to service accounts. Ultimately, the bank might simply wish to
lower your standards: training workers, parallelizing tasks, and hiring more staff will allow its
branch to proceed so that only a few customers each day would have to wait for about three
minutes in lines of three or less while most would wait less than two minutes in lines of two or
less. At the same time, the workers would not feel overburdened and would be able to continue
providing your customers with cheerful, useful service.

!
Analysis of Problem and Contemplation of
Various Modeling Methods
	 The nature of the problem requires that we carry out a simulation using probability-
based random numbers to model the problem. There are three such ways to accomplish this task.
First, geometrically: we could make two dart boards whose different regions represent different
times between arrival and service time, respectively, and throw darts at each board in sets of 150
to generate random “average” customers to model a bank day with 150 customers. This is a
highly inefficient method of modeling the problem whose results are completely dependent on
our ability to throw darts accurately or inaccurately. This geometric probability method is also
not the purpose of this competition.

Secondly, algebraically: we can come up with a set of equations to randomly simulate various
intervals between arrival and intervals of service. Though this method is much more
mathematical and objective than the previous method, it is still very inefficient, as it would
require copious amounts of calculations. Additionally, careless mathematical errors would make
the model inaccurate and skew results.

	 A third option is to code a program that can randomly generate numbers based on the
given probabilities and correlated to given times between arrival and service times. We believe

PROBLEM B COMAP 4093 PAGE ! OF 358

this option to be the best of the three. This method is highly objective, efficient and
mathematical. Though a truly random number can never be reached, computer programs can
offer the closest thing to a random number, and therefore are highly objective. Furthermore, after
the initial time taken to code the program, we can efficiently simulate many problem models, and
when optimization is needed, we can easily modify and rerun the program to find conditions
when the manager’s guidelines are met. Also, computer science is a highly mathematical field,
and thus is well suited as a mathematical model.

	 Thus, through an analysis of the two possible interpretations of the problems and of the
three various ways through which we can model the problem, we have decided to model both
interpretations of the problem with a computer program. This allows us to not only assess all
natures of the problem as perceived by us in a mathematical, objective and efficient fashion. By
doing so, we hope that we can gather accurate results and produce an effective, yet minimal,
model that meets the manager’s guidelines.

!
Our Mathematical Model
	 We designed a computer program written in Java (Appendix A) and compiled
in JCreator. The program can generate two pseudorandom numbers that would
determine, based on the probabilities provided in the problem, the time between
arrivals of each customer as well as how long each customer’s service time was. The
program was run through the Java compiler for 150 customers as specified, an average bank day
was calculated to be approximately 8.4 hours (Appendix C) and five data sets were taken. A
more comprehensive evaluation of the program logic can be found in (Appendix B). Multiple
data sets were taken in order to reduce the effect of error upon the average of the five data sets.
Results for the existing time between arrivals and service time are demonstrated below in both
graph form and data table. The first three data sets were graphed.

Number of Customers in Line per Minute (Run One)

N
um

be
r o

f C
us

to
m

er
s

0

1

2

3

4

5

Time (Minutes)
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Number of Customers in Line

PROBLEM B COMAP 4093 PAGE ! OF 359

	 Each average wait time per customer and average line length was the average of 150
customers. We then took the average of each simulation we ran to determine a more accurate
approximation of average wait time per customer and average line length.

Number of Customers in Line per Minute (Run Two)
N

um
be

r o
f C

us
to

m
er

s

0

1

2

3

4

5

Time (Minutes)
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Number of Customers in Line

Number of Customers in Line per Minute (Run Three)

N
um

be
r o

f C
us

to
m

er
s

0

1

2

3

4

5

6

Time (Minutes)
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

Number of Customers in Line

Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5 Average

Number of
Customers who
Waited at Least 2
Minutes

147 106 95 113 135 119.2

Number of
Minutes Line
Exceeded 2
Customers

308 79 33 162 140 144.4

Average Wait Time
Per Customer

18.413 4.06 2.98 3.4 6.093 6.989

Average Line
Length

7.424 1.558 1.064 1.256 2.374 2.735

PROBLEM B COMAP 4093 PAGE ! OF 3510

Optimizing Our Models
	 We have found two different possible ways to interpret it. The first interpretation is
that the average customer cannot wait in line more than two minutes and the line
length must never exceed two customers. However, it is near impossible to reach 100%
efficiency in this interpretation, and the probability that the solution will never have an individual
wait in line for two minutes or more. Therefore the probability that the solution exists is
extremely hard for us to reach. Therefore, we are aiming to modify the bank services as many
customers as possible to wait less than 2 minutes in line, and we found that we can obtain about
90% of customers to wait less than two minutes, and if we have 90% of customers waiting less
than two minutes, the line will always have an average of two or less people. According to our
optimization model (represented by Definition 1), the manager would need to have service
times of 3 and 4 minutes cut, service time of 2 minutes be at most 35%, and service
time of 1 minute be at least 65% to meet the goal. As a result of the sheer impracticality
of the service time cuts, and the fact that the manager’s guidelines in this interpretation would
never be met, we developed a second interpretation to optimize. The second interpretation
of the problem is that the average wait time of all customers is less than two
minutes and the line must never exceed two customers. Under this interpretation, the
average line length was always less than two. According to our optimization model for this
interpretation (Definition 2), the service time of 4 minutes would need to eliminated,
the service time of 1 minute increased by 10% and the service time of 2 minutes
increased by 5% to achieve the minimal changes necessary to achieve the manager’s guidelines.

Optimization 2: Decrease probability of service time of 4 minutes by 10%, increase
probability of service time of 3 minutes by 10%
Optimization 6: Decrease probability of service time of 4 minutes by 15%, increase
probability of service time of 3 minutes by 5%, increase probability of service time
of 2 minutes by 10%
Optimization 10: Decrease probability of service time of 4 minutes by 15%, increase
probability of 1 minute by 15%.
Control: Manager's original service Time.
Definition 1: Optimization based off of first interpretation.
Definition 2: Optimization based off of second interpretation !
!
!
!

PROBLEM B COMAP 4093 PAGE ! OF 3511

Amount of Time 2+ Customers Were in Line per Data Set

A
m

ou
nt

 o
f

T
im

e
(m

in
ut

es
)

0

50

100

150

200

250

300

350

400

Data Set

1 2 3 4 5

Optimization 2 Optimization 6
Optimization 10 Optimization Final (Definition 1)
Optimization Control Optimization Final (Definition 2)

Number of Customers Who Waited 2+ Minutes per Data Set
N

um
be

r o
f

C
us

to
m

er
s

0

20

40

60

80

100

120

140

160

Data Set

1 2 3 4 5

Optimization 2 Optimization 6
Optimization 10 Optimization Final (Definition 1)
Optimization Control Optimization Final (Definition 2)

PROBLEM B COMAP 4093 PAGE ! OF 3512

Average Amount of Time Customers Waited 2+ Minutes per
Optimization Model

A
m

ou
nt

 o
f

T
im

e
(M

in
ut

es
)

0

40

80

120

160

Optimization Model
Optimization 2 Optimization 6
Optimization 10 Optimization Final (Definition 1)
Optimization Control Optimization Final (Definition 2)

Opt. 2

Opt. 6

Opt. 10

Opt. Control

Opt. Final (2)

Opt. Final (1)

Average Number of Customers Who Waited At Least 2 Minutes
per Optimization Model

Av
er

ag
e

N
um

be
r o

f
C

us
to

m
er

s

0

30

60

90

120

Optimization Model
Optimization 2 Optimization 6
Optimization 10 Optimization Final (Definition 1)
Optimization Control Optimization Final (Definition 2)

Opt. 2

Opt. 6

Opt. 10

Opt. Final (1)

Opt. Control

Opt. Final (2)

PROBLEM B COMAP 4093 PAGE ! OF 3513

Average Line Length During Customer Presence per Optimization
Model

A
m

ou
nt

 o
f

T
im

e
(M

in
ut

es
)

0

0.75

1.5

2.25

3

Optimization Model
Optimization 2 Optimization 6
Optimization 10 Optimization Final (Definition 1)
Optimization Control Optimization Final (Definition 2)

Opt. 2

Opt. 6

Opt. 10

Opt. Control

Opt. Final (2)

Opt. Final (1)

Average Wait Time per Customer per Optimization Model

A
m

ou
nt

 o
f

T
im

e
(M

in
ut

es
)

0

1.75

3.5

5.25

7

Optimization Model
Optimization 2 Optimization 6
Optimization 10 Optimization Final (Definition 1)
Optimization Control Optimization Final (Definition 2)

Opt. 2

Opt. 6

Opt. 10

Opt. Control

Opt. Final (2)

Opt. Final (1)

PROBLEM B COMAP 4093 PAGE ! OF 3514

Strengths and Weaknesses

Conclusion
Sensitivity Testing
Our model is not very sensitive to outside changes: in fact, the reason our recommendations to
management were so severe was that (especially considering that the management desired
absolute zero levels for excess wait times or queue lengths) even incremental manual changes did
not affect the results significantly. The only independent variables in this experiment were the
probabilities of each customer entering at a given time and using a certain service length, and
although in real life fluctuations would occur, they are not be shown to strongly alter results.

!
Extra questions:
Given extra time, we would, of course, ideally have tested out the model’s predictions in real life
but, more importantly, we would have actually discussed a real bank’s operations with actual
management and figured out where the most time is lost. For instance, if deposits/withdrawals
(vault runs) take the most time, ATMs could solve that fairly easily; if account maintenance takes
the most time, perhaps worker training and an updated consumer website might be in order. We
would also would have taken into account a model of the week had the influx of customers per
day not been assumed to be constant.

Strengths Weaknesses

Running the simulation on a computer actually
acted as an average bank day with real
customers: each time, we generated a series of
150 customers, each who had his own
probabilistically-determined time elapsed since
last customer’s arrival and his own
probabilistically-determined service time.

Because of time constraints, we ran the
simulation of 150 customers each only five
times and therefore ran the experiment for
only 150 trials x 5 runs = 750 customers.
Ideally, we would have analyzed thousands of
customers hundreds of times, but although the
computer could have accomplished this
quickly, it would have taken far too long for us
to present the data in a meaningful chart of
patterns.

Our program is not specific to this problem: we
could easily modify this model simply by editing
constant declarations (for example, even as the
manager trained his employees to process
transactions more quickly, we could change the
probabilities of each service time to reflect the
upgraded branch platform)

Numbers generated are only pseudorandom:
they come from a complex hashing algorithm
based upon a timestamp, but they are
deterministic nonetheless

PROBLEM B COMAP 4093 PAGE ! OF 3515

Non-technical Letter to the Manager
11/11/2013

!
ATTN: Manager

XYZ Bank

4771 Campus Drive

Irvine, CA, 92608

!
!
Dear Manager,

!
After considering your request and modeling the current demands upon your branch, we have
determined that your current service platform will unfortunately not allow you to meet your
goals:

*Wait time less than two minutes for any customer: we have determined that, on an average day,
between 110 and 130 of your customers will have to wait in line for at least two minutes,
assuming your current service platform. The modeled average wait time for any given customer
is about 7 minutes.

*Queue no longer than two persons at any time: we have determined that, on an average
operating day of 501 minutes, your line will be at least three people long for about 144 minutes
from the time the first customer enters to the time the last customer leaves, assuming your current
service platform. The modeled average line length at any given minute of the day is about 3
persons.

!
The limitations imposed upon your branch are, unfortunately, inescapable results of the fact that
your business is healthy and your customers arrive frequently and for extended periods. However,
your growth will be limited until you are able to satisfy your customers to your establishment’s
high standards.

!
 With this in mind, we have developed two ways to optimize your customer service and increase
the speed at which your customers are processed. Thus, we recommend worker training modules
to speed your worker’s transaction capabilities. The first way optimizes that 90% of all customers
wait in line for less than two minutes. If you were able to eliminate four-minute service times
(currently 15% of your business) and three-minute service times (currently 40% of your business),

PROBLEM B COMAP 4093 PAGE ! OF 3516

then increase two-minute service times to 65% and one-minute service times to 35% through
worker efficiency training, you would seriously improve wait time. However, the second way
optimizes that all 150 customers wait for an average of less than two minutes. This model is
incredibly more efficient. If you were able to eliminate four-minute service times (currently 15%
of your business) and improve two-minute service times by 5% and one minute service times by
10%, the process would achieve the goal, albeit the number of customers who wait in line or two
minutes or more and the line length would increase five fold. Furthermore, both optimization
models also reduce the line length to fit your expectations.

One opportunity to achieve this might be to parallelize tasks: many banking customers walk into
branches seeking to service accounts and to withdraw or deposit money; however, account
servicing requires a platform banker, while balance modification requires a teller. In a traditional
branch, the customer would visit the teller first and then the banker, but you instead would be
able to save time by allowing the customer to fill out a balance slip when he entered (only if there
was a line), and then routing any customer with an account service request to the banker first.
The banker would submit the customer’s balance slip to the tellers if there was a line or, if there
was no line, simply perform the maintenance request and then send the customer to the teller as
usual. In this way, customers who only wished to deposit or withdraw would quickly be able to do
so if there were no line, but those with maintenance requests would be able to avoid longer lines
since their money would be deposited or withdrawn while they themselves discussed their
accounts with a banker.

!
Realistically, however, these changes will require ambitious efforts that will tax you and might
strain your workers. Instead, you might consider hiring one more teller to process quick requests
and one more banker to service accounts. Ultimately, you might simply wish to lower your
standards: training workers, parallelizing tasks, and hiring more staff will allow your branch to
proceed so that only a few customers each day would have to wait for about three minutes in lines
of three or less while most would wait less than two minutes in lines of two or less. At the same
time, your workers would not feel overburdened and would be able to continue providing your
customers with cheerful, useful service.

!
We wish you and your business luck.

!
!
Sincerely,

Team Limit DNE

!

PROBLEM B COMAP 4093 PAGE ! OF 3517

Bibliography
1. Federal Reserve Board. "Top 50 Holding Companies Summary Page." Top 50 Holding

!
	 Companies Summary Page. N.p., 30 Sept. 2013. Web. 11 Nov. 2013.

!
2. Horstmann, Cay S. Big Java. Hoboken, NJ: John Wiley, 2005. Print.

!
Appendices
Appendix A. Program Code
The following is the program we used to simulate 150 bank customers over a single
bank day, with wait times and service times randomly generated based on the
probability provided in the problem.
// indicates annotations not in the program. !
Main Method Program
//Bank class calculates individual time between arrivals and service time for each individual
public class Bank
{
 public static void main (String[] args)
 {
 //Creates a time stamp for the system
 int timeStamp = 0; !
 //Creates a mathematical constant of which the bank estimates it serves (150 people)
 final int MAXNUMBEROFPEOPLE = 150; !
 //Creates a mathematical constant of approximately how many minutes (nearest int) the
bank is open in a six day week (weighted average)
 //Computed in previous calculations
 final int AVGNUMMINUTES = 501; !
 //Creates integers for the wait time for each customer, the time between arrivals, and the

PROBLEM B COMAP 4093 PAGE ! OF 3518

service time
 int[] waitTime = new int[MAXNUMBEROFPEOPLE];
 int timeBetweenArrivals;
 int serviceTime; !
 //Creates a true/false boolean for each person to determine if they are waiting in line or
not (true for yes, false for no)
 boolean[] inLine = new boolean[MAXNUMBEROFPEOPLE]; !
 //Creates one counter to determine how many customers have to wait more than 2 minutes
for service
 //Creates one counter to determine how many minutes the line exceeds two people
 int waitOverflow = 0;
 int lineOverflow = 0; !
 //Creates an array that stores each person's arrival time
 int [] arrivalTimes = new int[MAXNUMBEROFPEOPLE]; !
 //Creates an array that stores when each peron will leave the bank
 int [] afterService = new int[MAXNUMBEROFPEOPLE]; !
 //For each minute in a day, this array determines how many people are in the line every
minute
 int[] people = new int[AVGNUMMINUTES]; !
 //Sum to determine average length of the queue
 double sumLine = 0;
 //Sum to determine average wait time
 double sumWait = 0;
 //Average Line
 double averageLine = 0;
 //Average waitTime
 double averageWait = 0; !
 //For first customer, there is no delay time, therefore there must be a separate object to
construct
 //Create a new customer (first in line)

PROBLEM B COMAP 4093 PAGE ! OF 3519

 Customer firstInLine = new Customer();
 //Generate random time between arrival and service time for the first customer
 timeBetweenArrivals = firstInLine.randomDelayTime();
 serviceTime = firstInLine.randomServiceTime();
 //Input these random times into the constructor
 firstInLine = new Customer(timeBetweenArrivals, serviceTime); !
 //Store arrival time and leaving time
 arrivalTimes[0] = timeBetweenArrivals;
 afterService[0] = serviceTime + timeBetweenArrivals; !
 //Print out arrival time (in minutes from opening), transaction times, and when each
customer leaves
 //System.out.println("Arrival Time of Customer 1 (in minutes from opening): " +
arrivalTimes[0]);
 //System.out.println("Customer 1 had a transaction time of: " + serviceTime);
 //System.out.println("Finished service at: " + afterService[0]); !
 //Perform same actions as above except that it calculates the time between arrivals and
determines if there is a wait time
 for (int i = 2; i <= MAXNUMBEROFPEOPLE; i++)
 {
 Customer nextInLine = new Customer();
 timeBetweenArrivals = nextInLine.randomDelayTime();
 serviceTime = nextInLine.randomServiceTime();
 //Prints out the time between arrivals
 System.out.println("\nThe time between arrivals of previous and current customer is: "
+ timeBetweenArrivals);
 nextInLine = new Customer(timeBetweenArrivals, serviceTime); !
 //Sets arrival time of current customer to be the sum of time between arrivals and the
previous customer's arrival time
 arrivalTimes[i-1] = timeBetweenArrivals + arrivalTimes[i-2]; !
 //Prints out the arrival time
 System.out.println("Arrival Time of Customer " + i + " (in minutes from opening) is: "
+ arrivalTimes[i-1]);

PROBLEM B COMAP 4093 PAGE ! OF 3520

!
 //If the arrival time of the current customer and the previous customer's leaving time
is negative
 //In other words, if the current customer arrives before the previous customer leaves
 if ((arrivalTimes[i-1] - afterService[i-2]) < 0)
 {
 //Calculates wait time of the current customer
 waitTime[i-1] = afterService[i-2] - arrivalTimes[i-1];
 //If the wait time is not less than 2 minutes (as stated in the problem), the counter
for the overflow cycles once
 if (waitTime[i-1] >= 2)
 {
 waitOverflow += 1;
 }
 //The current customer's status for a period of time is that he/she must wait in line
 inLine[i-1] = true;
 sumWait += waitTime[i-1];
 averageWait = sumWait / MAXNUMBEROFPEOPLE;
 //Prints out wait time of customer, service time, and leaving time
 afterService[i-1] = afterService[i-2] + serviceTime;
 System.out.println("Wait Time of Customer " + i + " is: " + waitTime[i-1]);
 System.out.println("Customer " + i + " had a transaction time of: " + serviceTime);
 System.out.println("Finished service at: " + afterService[i-1]); !
 }
 else
 {
 //If the customer doesn't have to wait, they go immediately after they arrive
 afterService[i-1] = arrivalTimes[i-1] + serviceTime;
 System.out.println("Customer " + i + " had a transaction time of: " + serviceTime);
 System.out.println("Finished service at: " + afterService[i-1]);
 } !
 } !!

PROBLEM B COMAP 4093 PAGE ! OF 3521

 //Runs the loop for every customer
 for (int j = 2; j <= MAXNUMBEROFPEOPLE; j++)
 {
 //If the customer is in line at any point in time, the statement will compute
 if (inLine[j-1])
 {
 //For the time the person starts waiting in line (inclusive), to the point where they are
processed (exclusive)
 for (int k = arrivalTimes[j-1]; k < (arrivalTimes[j-1] + waitTime[j-1]); k++)
 {
 //For every minute a person is waiting in line, the array for the amount of people
per minute goes up
 //Array (as all arrays in this program) are offset by one because indexes of arrays
begin at 0
 people [k-1] += 1;
 }
 }
 } !
 //Runs the clock for one day
 for (timeStamp = 1; timeStamp <= AVGNUMMINUTES; timeStamp++)
 {
 //Prints out each minute
 System.out.println("Time Stamp: " + timeStamp); !
 sumLine += people[timeStamp-1]; !
 averageLine = sumLine / (afterService[149] - arrivalTimes[0]); !
 //Prints out the average length of the line at each minute the customers are in the bank
 System.out.println("Length of Line is: " + people[timeStamp-1]); !
 //If the line exceeds 2 people, the counter increments by 1
 if (people[timeStamp-1] > 2)
 {
 lineOverflow += 1;

PROBLEM B COMAP 4093 PAGE ! OF 3522

 } !
 }
 //Prints out the number of customers that must wait 2 minutes or more
 System.out.println("The wait time is 2 minutes or more for " + waitOverflow + "
customers");
 //Prints out the number of minutes that the line exceeds 2 people
 System.out.println("The line exceeds 2 people for " + lineOverflow + " minutes");
 //Prints out the average wait time
 System.out.println("The average wait time is: " + averageWait);
 //Prints out the average length of the line during the time people are in the building
 System.out.println("The average length of the line is: " + averageLine); !!
 }
}

Method Class
//This class allows storage of each Customer's unique time between arrival and service time, the
ability to keep track of each customer
//, and the calculation of arrival and service times
public class Customer
{
 //Instantiate instance fields, one for the arrival time, the other for the service time
 private int timeSinceLast;
 private int serviceTime; !
 //Default Constructor (initalizes each instance field to zero)
 public Customer()
 {
 timeSinceLast = 0;
 serviceTime = 0;
 } !
 //Constructor that initalizes each instance field according to a random arrival and service
time
 public Customer(int timeBetween, int serviceLength)

PROBLEM B COMAP 4093 PAGE ! OF 3523

 {
 timeSinceLast = timeBetween;
 serviceTime = serviceLength;
 } !
 //Access method to obtain arrival time
 public int getArrivalTime()
 {
 return timeSinceLast;
 } !
 //Accessor method to obtain service time
 public int getServiceTime()
 {
 return serviceTime;
 } !
 //Returns a random time between arrivals based on the data chart provided by Problem B
 public int randomDelayTime()
 {
 int arrivalTime;
 //Generates a random number
 double arrival = Math.random(); !
 //Returns the time (probability based on the random number)
 if (arrival <= 0.10)
 return arrivalTime = 0;
 else if (arrival <= 0.25)
 return arrivalTime = 1;
 else if (arrival <= 0.35)
 return arrivalTime = 2;
 else if (arrival <= 0.7)
 return arrivalTime = 3;
 else if (arrival <= 0.95)
 return arrivalTime = 4;
 else

PROBLEM B COMAP 4093 PAGE ! OF 3524

 return arrivalTime = 5;
 } !
 //Returns a random service time based on the data chart provided by Problem B
 public int randomServiceTime()
 {
 int serviceTime;
 //Generates a random number
 double service = Math.random(); !
 //Returns the time (probability based on the random number)
 if (service <= 0.35)
 return serviceTime = 1;
 else if (service <= 0.60)
 return serviceTime = 2;
 else if (service <= 1)
 return serviceTime = 3;
 else
 return serviceTime = 4;
 } !
}

!
!
!
!
!
!
!
!
!
!

PROBLEM B COMAP 4093 PAGE ! OF 3525

Appendix B. Program Flow Charts

PROBLEM B COMAP 4093 PAGE ! OF 3526

!!
!
!
!
!

PROBLEM B COMAP 4093 PAGE ! OF 3527

!
!
!
!
!!!!!!!!!!

PROBLEM B COMAP 4093 PAGE ! OF 3528

PROBLEM B COMAP 4093 PAGE ! OF 3529

!!!!!!!!!!!!

PROBLEM B COMAP 4093 PAGE ! OF 3530

PROBLEM B COMAP 4093 PAGE ! OF 3531

PROBLEM B COMAP 4093 PAGE ! OF 3532

PROBLEM B COMAP 4093 PAGE ! OF 3533

Appendix C. Third Program
We used below.

!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PROBLEM B COMAP 4093 PAGE ! OF 3534

Appendix C. Average Bank Hours
Computation for Average Bank Hours:

JPMorgan and Chase: $2,439,494,000- 37.826%

M-F: 9-6, Sat: 9-4

Average Hours per Day: [5(9) + 7]/6 = 8.667 hours

Bank of America $2,125,686,000- 32.961%

M-F: 9-6, Sat: 10-2

Average Hours per Day: [5(9) + 4]/6 = 8.167 hours

Citigroup Inc. $1,883,988,000- 29.213%

M-Th: 9-6, F: 9-5, Sat: 9-2

Average Hours per Day: [4(9) + 8 + 5]/6 = 8.167 hours

!
Weighted Average:

M-Th: .37826(9) + .32961(9) + .29213(9) = 9

F: .37826(9) + .32961(9) + .29213(8) = 8.709

Sat: .37826(7) + .32961(4) + .29213(5) = 5.427

.37826(8.667) + .32961(8.167) + .29213(8.167) = 8.356 hours ≈ 501 minutes

!
!
!
!
!
!
!
!
!
!
!

PROBLEM B COMAP 4093 PAGE ! OF 3535

!
!
!

Trial Customers who waited for 2+
minutes

Minutes that line had 2+ people

1 80 54

2 93 67

3 96 143

4 105 110

5 109 116

6 83 57

7 70 10

8 137 226

9 73 28

10 99 76

11 132 161

12 119 218

13 91 81

14 107 78

15 85 87

16 87 92

17 125 122

18 111 200

19 96 58

20 64 4

Appendix D: Third Program
This is a program we used to check our work. Results are shown below.

	COMAP 4093 B Summary Sheet.pdf
	COMAP 4093 B Solution Paper.pdf

